
ISAW User
Manual

ARGONNE NATIONAL LABORATORY

Intense Pulsed Neutron Source

Software Developers
Dennis Mikkelson, DataSet Tools, Netcomm packages

Ruth Mikkelson, Command package NeXus data retriever
Peter Peterson, Linux install, SCD operators

Alok Chatterjee, ISAW GUI package
John Hammonds, IPNS package

Dongfeng Chen, ChopTools package
Thomas Worlton, project manager

The research is sponsored by the U.S. Department of Energy under contract no. W-31-109-ENG-38.

Argonne National Laboratory
9700 South Cass Ave • Building 360

Phone 630-252-8755 • Fax 630-252-4163

I N T E N S E P U L S E D N E U T R O N S O U R C E

ISAW User Manual

Introduction
 9

ISAW and Java™
 9

Why Java? 9

Java Basics 9

Java archive files 9

Java libraries in ISAW 9

Miscellaneous files included with ISAW 10

Installing ISAW
 10

Steps required for ISAW installation 10

Install Java 11

Copy the ISAW distribution file 11

Unzipping the ISAW distribution 11

Running ISAW 12

ISAW Props
 12

Introduction 12

Editing ISAW Props 12

Directory Options 12

Preferred Browser 12

Live Data Server Options 12

Remote Data Server Options 13

Screen Size 13

Viewer Options 13

Introduction to ISAW
 15

The ISAW Graphical User Interface 15

The ISAW Menu Bar 15

The Tree View 15

T A B L E O F C O N T E N T S

Tabbed Panes 15

The Attributes Tab 16

DataSet Log Tab 16

Session Log Tab 16

System Properties Tab 16

Live Data Connection Tab 16

Scripts Tab 16

ISAW Data Objects
 17

The Data Block 17

The DataSet 17

DataSet Creation 17

DataSet Organization 17

DataSet Operators 18

Reading and Saving Data
 19

The IPNS Runfile Retriever 19

The NeXus File Retriever 19

Log File Retriever 19

Live Data Retriever 20

Remote file servers 21

Saving Data 22

Data Viewers
 23

Viewer Menus 23

Image Viewer
 23

The Image View 23

Line Graph Display 24

View Controls 24

T A B L E O F C O N T E N T S

Cursor Readout Areas 24

Image View Edit Menu 25

Image View Options Menu 25

Zoom Control 25

3D Viewer
 26

The 3D View 26

View Controls 26

Time-of-Flight Controls 27

Pixel Data Readouts 27

3D View Edit Menu 27

3D View Options Menu 27

HKL Slice Viewer
 27

The HKL Slice View 27

View Controls 28

View Tab 28

Slice Tab 29

Conversions Tab 29

Saving DataSets with the HKL Slice Viewer 29

HKL Slice Viewer Edit Menu 29

HKL Slice Viewer Options Menu 29

Scrolled Graph View
 29

The Scrolled Graph View 29

View Controls 30

Graph Data Cursor Readouts 30

Scrolled Graph View Edit Menu 31

Scrolled Graph View Options Menu 31

T A B L E O F C O N T E N T S

Selected Graph View
 31

The Selected Graph View 31

Selected Graph View Edit Menu 32

Selected Graph View Function Controls 32

Selected Graph View Options Menu 33

Difference Viewer
 33

The Difference Viewer 33

Difference Viewer Edit Menu 34

Difference Viewer Function Controls 34

Selected Table Views
 35

The Selected Table Views 35

The GRX_Y Table 35

Parallel y(x) Table 35

Instrument Table 36

Common Viewer Menus 36

Table Generator
 36

The Table Generator 36

Reciprocal Lattice Viewer
 38

The Reciprocal Lattice Viewer 38

The Reciprocal Lattice Viewer Launch Window 38

View Controls 39

The View Tab 40

Selected Point Data 41

Calculate FFTs of Projections 41

Planes Tab 41

Constant h Planes, Constant k Planes, Constant l Planes 41

T A B L E O F C O N T E N T S

SAND Wedge Viewer
 42

The SAND Wedge Viewer 42

Opening Files 42

The SAND Wedge View 43

SAND Wedge Viewer Option Menu 45

Scripts
 46

The Scripts Tab 46

ISAW Script Data Types 46

Other Data Types 47

Numeric, Logical, and Relational Operations 47

Script Structure 48

Intrinsic Operators 48

Other Operators 49

Script Operators 49

Writing Java operators 50

Input-Output Considerations 50

Considerations for other cases 50

Interface to ISAW 50

ISAW to Command Pane 50

ISAW to ScriptProcessor 51

Command Pane to ISAW 51

Parameter GUI’s 51

Building a Script 53

Operator Generator
 55

The Operator Generator 55

Information Tab 55

T A B L E O F C O N T E N T S

Method Info Tab 55

Operator Info Tab 55

Documentation Tab 55

Programmer Notes 56

Operator Generator File Menu 56

Building DataSets
 57

Steps in Building a DataSet 57

Creating a DataSet
 57

Construct the Empty DataSet 57

Add Attributes to the DataSet 58

Construct a Data Object 59

Add Attributes to a Data Object 60

Add the Data Object to the DataSet 60

Attributes Required for a DataSet and Data Object 60

Data Retriever 62

Example 63

T A B L E O F C O N T E N T S

Introduction
Data analysis is a vital step of every neutron scattering experiment. Often this
analysis depends upon the use of several different operations that span a wide
range of instruments and software packages. While this diversity is valuable in
modern laboratories, many users prefer consistent results with a minimal array
of tools. Integrated Spectral Analysis Workbench software aims to provide a
comprehensive set of tools for reading, manipulating, and visualizing neutron scattering
data.

About ISAW. ISAW is cross-platform, modular

This user manual is intended to help new and veteran users better use ISAW to its fullest
extent. It is simple enough for beginners, but also includes detailed information for experts
who would like to modify ISAW to suit their needs.

ISAW and Java™
Why Java?

One of the major advantages of writing software in the Java language is portability. ISAW is
designed so that it can be used on any computer that has the Java Runtime Environment in-
stalled on it. This facilitates the support of a variety of operating systems and computing plat-
forms including Windows, Mac OS, and Linux.

Java Basics

Files containing Java language source code have the extension “.java”. The compiled Java byte
code files have the extension “.class”. These class files can be created on one computing plat-
form, such as Intel or PowerPC, and run on any other computing platform with the same ver-
sion (or higher) of Java. Developing java programs and compiling them requires the Java De-
velopment Kit, which can be downloaded for free from Sun’s web site:
http://java.sun.com/j2se/. If you are only interested in running java programs, then you sim-
ply need the Java Runtime Environment which is also available for free at the Java web site.

Java archive files

In order to more easily distribute ISAW, class files and libraries are placed into Java archive files,
or “.jar” files. These files are used to store the various components that constitute a program
such as ISAW, and are very similar to the common “zip” file. The main difference between a jar
file and a zip file is that the jar file contains a manifest that specifies how the jar will be used. For
example, if one of the jar files is intended to be run as an independent program, one of their
classes will be specified as the “main” class.

All of the ISAW class files are contained in isaw.jar and they should be extracted in order for
ISAW to be fully functional; however, they are not required to use ISAW’s more basic features.
To extract, or “unjar,” the files, the jar command is most commonly used, but it requires the
full Java Development Kit. If the JDK is installed, you can unjar ISAW by typing the command
jar –xvf ISAW.jar into a terminal.

Java libraries in ISAW

I N T R O D U C T I O N A N D I N S T A L L I N G I S A W

1

CHAPTER

1

http://java.sun.com/j2se/
http://java.sun.com/j2se/

In Java programs, a library is a collection of subprograms that performs special tasks or services
independent of the parent program. This helps contribute to the modular design of ISAW, and
makes a variety of useful tools available to users. Libraries that are currently utilized by ISAW
include NeXus, HDF, Scientific Graphics Toolkit, JOGL, and GSAS. Each of these libraries is
available on the ISAW ftp server (ftp://zuul.pns.anl.gov/isaw). You can also find a small num-
ber of libraries in the lib folder in the main ISAW directory on your computer.

In order to provide support for NeXus files, it is necessary to include the HDF and NeXus li-
braries. The NeXus API (see http://www.neutron.anl.gov/nexus/) is layered on top of the
HDF library that was developed at the National Center for Supercomputer Applications (see
http://www.hdfgroup.org). These libraries are written in C or C++ and require separate versions
for different computing platforms.

The Scientific Graphics Toolkit, sgt_v2, is a general purpose Java graphics package developed at
the National Oceanographic and Atmospheric Administration (NOAA). It is used in the Con-
tour View. The SGT package can be found in gov folder within the main ISAW directory.
More information about SGT can be obtained from:

http://www.epic.noaa.gov/java/sgt/index.html.

JOGL, or Java OpenGL, is a library that allows the 3D rendering capabilities of OpenGL to be
utilized in Java programs. Since JOGL is so closely tied to the OpenGL API, your machine
must support OpenGL in order for JOGL to work. Currently, the only viewer in ISAW to take
advantage of JOGL is the SCD Reciprocal Lattice Viewer.

The GSAS library allows ISAW to utilize a small number of GSAS and Fortran subroutines
including a Gaussian peak shape function, a pseudo-Voight peak shape function, and a comple-
mentary error function. More functionality will be added to this library in the future.

Miscellaneous files included with ISAW

Other files included besides the ISAW class files and these libraries are sample scripts, sample
data, Help, and Documentation. To further simplify distribution, these files and libraries are
zipped or archived together. A single install jar file can be used on Windows, Linux, or UNIX
systems.

Installing ISAW
Steps required for ISAW installation

The first time ISAW is installed it is necessary to ensure that the following steps are completed.

• Install java on the computer to be used for ISAW

• Copy the ISAW distribution file(s) to the local computer

• Unzip the ISAW files to a folder on the local disk

• Run ISAW

I N T R O D U C T I O N A N D I N S T A L L I N G I S A W

2

http://www.neutron.anl.gov/nexus/
http://www.neutron.anl.gov/nexus/
http://www.hdfgroup.org
http://www.hdfgroup.org
http://www.epic.noaa.gov/java/sgt/index.html
http://www.epic.noaa.gov/java/sgt/index.html

Install Java

Before ISAW can be installed, it is necessary to install the Java Runtime Environment (JRE)
or the Java Distribution Kit (JDK) on your computer. If you simply want to run ISAW
then you will only need the JRE; however, if you want to make changes to ISAW or de-
velop your own tools, then you should download the JDK. ISAW currently requires Java 6.
For software and instructions, see:

http://developers.sun.com/resources/downloads.html

After installation, the Java executable (java.exe) will be in the bin folder of the main JRE or
JDK folder.

The command to start ISAW requires that either the path to this command is included on
the command line or that the path environmental variable includes the Java folder. You can
test whether your path environmental variable includes java.exe by opening a command
pane and typing the command java –version into a terminal. If Java is correctly in-
stalled, this will tell you which version of Java is installed. If you get an error message, it
will be necessary to either modify your path environmental variable to include the Java
“bin” folder in the path or to use an explicit path when typing the java command.

 On Windows systems, the path can be modified via Environmental Variables. To
access this click Start, then click Settings, and then click Control Panel. Double-click the
System icon and then select the Advanced tab in the window that appears. Under the
Advanced tab, press the Environmental Variables button. You should now see options
for Path and User variables. Add the full system path to the bin folder of your JRE or
JDK software to the Path section.

Copy the ISAW distribution file

The ISAW distribution file is available through the ftp site:

ftp://zuul.pns.anl.gov/isaw

As was discussed earlier, the ISAW class files in isaw.jar are the same for every computing
platform, but installation procedures and run procedures, as well as the non-ISAW files
vary for different platforms. To simplify distribution and ease the burden on users, all of
the different files have been packed inside a single install executable.

Unzipping the ISAW distribution

The ISAW distribution is a self-extracting Java archive (jar file). To extract the files and in-
stall them on your computer, double-click the downloaded file and then choose the destina-
tion directory for the files. We recommend installing them into a folder in your home di-
rectory, but you can place them anywhere.

I N T R O D U C T I O N A N D I N S T A L L I N G I S A W

3

http://developers.sun.com/resources/downloads.html
http://developers.sun.com/resources/downloads.html

Running ISAW

 On Windows systems, open the file called ISAW_exec.bat in the main ISAW direc-
tory. This file adds the folders containing the native interface libraries, HDF and NeXus
libraries to the path and runs ISAW.

 On a Mac OS computer, simply open the file called Isaw_exec.applescript in the
main ISAW directory. This will open the Apple Script Editor program and display the
ISAW execution script in a new window. This script can be easily edited to perform any
additional functions that you require. When you are ready to run ISAW, click the green
Run button.

ISAW Props
Introduction
The ISAWProps.dat file is designed to store user preferences for ISAW including your de-
fault web browser, default instrument, remote data servers, default screen size, and many
other options. It can usually be found in your operating system’s home directory.

Editing ISAW Props
ISAW Props can be edited by selecting the Edit Properties File in the Edit menu in
ISAW, or by opening IsawProps.dat with any simple text editor. To change the value for a
particular field, simply type the new value in the area after the equals sign (=). There are
several categories of properties that can be edited in ISAW and they will be listed below.
The following documentation will list the key, or specific property, and an example value
for that key.

Directory Options
These properties define the path for data, script, and/or operator locations in ISAW.

ISAW_HOME=C:/ISAW/
Help_Directory=C:/ISAW/IsawHelp/
Script_Path=C:/ISAW/Scripts/
Data_Directory=C:/ISAW/SampleRuns/
Instrument_Macro_Path=C:/ISAW/
User_Macro_Path=C:/ISAW/
Image_Path=C:/ISAW/images/

Preferred Browser
This property defines the default browser to be used by ISAW to open HTML files and
external links. It should list the system path to the actual application that will be used.

PREFERRED_BROWSER=/Applications/Safari.app/Contents/MacOS/Safari

Live Data Server Options
ISAW can connect to live data servers that can provide data as it is collected. The following
entries specify the locations and port numbers that are used to communicate with the
server. The first line specifies the name of the instrument that you will be collecting data
from, the second line specifies the server address followed by the port number. These val-

I N T R O D U C T I O N A N D I N S T A L L I N G I S A W

4

ues should be separated by a semicolon. The default port number is 6088, but this option
can be changed if the server is transmitting data through a different port.

Inst1_Name=HRMECS
Inst1_Path=zeus.pns.anl.gov;6088

Inst2_Name=mandrake
Inst2_Path=mandrake.pns.anl.gov;6088

Inst3_Name=GPPD
Inst3_Path=gppd-pc.pns.anl.gov;6088

Inst4_Name=UW-Stout
Inst4_Path=dmikk.mscs.uwstout.edu;6088

Remote Data Server Options

ISAW can also connect to remote data servers to retrieve datasets. These properties are
similar to those in the Live Data Server Options.

IsawFileServer1_Name=HRMECS(zeus)
IsawFileServer1_Path=zeus.pns.anl.gov;6089

IsawFileServer2_Name=Test(dmikk-Isaw)
IsawFileServer2_Path=dmikk.mscs.uwstout.edu;6089

NDSFileServer1_Name=Test(dmikk-NDS)
NDSFileServer1_Path=dmikk.mscs.uwstout.edu;6008

Screen Size

These options are used to change the default screen size of windows in ISAW. Values are
expressed in pixels or percentage. Percentage values should be entered as values less than
one; pixel values should be entered as values greater than one.

Isaw_Width=700
Isaw_Height=500
Tree_Width=300
Status_Height=200

Viewer Options

The IsawProps.dat file also contains default values for many viewer settings such as color scale,
3D view position, horizontal scrolling flag, rebinning flag, brightness, horizontal graph scale fac-
tor and others.

ColorScale = Rainbow
RebinFlag = false
HScrollFlag = true
ViewAltitudeAngle = 5.0
ViewAzimuthAngle = 90.0
ViewDistance = 4.5
ViewGroups = Medium
ViewDetectors = SOLID
Brightness = 40
Auto-Scale = 0.0

I N T R O D U C T I O N A N D I N S T A L L I N G I S A W

5

The following are the possible values for the various viewer options.

Supported ColorScale names:
• Gray
• Negative Gray
• Green-Yellow
• Heat 1 (default)
• Heat 2
• Rainbow
• Optimal
• Multi
• Spectrum

Possible RebinFlag values:
• true (default)
• false

Possible HScrollFlag values:
• true
• false (default)

Valid ViewAzimuthAngle values:
• -180 to 180

Valid ViewAltitudeAngle values:
• -89 to -89

Valid ViewDistance values:
• positive float values, will be clamped to [r/2,5r]
• where r is the maximum sample to detector distance

Possible values for the ViewGroups flag
• Small
• Medium
• Large
• NOT DRAWN

Possible values for the ViewDetectors flag
• Filled
• Hollow
• Marker
• NOT DRAWN

Valid Brightness values:
• 0 to 100

Valid Auto-Scale values:
• 0 to 100

I N T R O D U C T I O N A N D I N S T A L L I N G I S A W

6

Introduction to ISAW
The ISAW Graphical User Interface

The Graphical User Interface, or GUI, is an important part of many computer
programs. ISAW uses a GUI to provide a more intuitive working environment
for users. The main ISAW GUI consists of two main panels, a menu bar, and
a message area. The relative sizes of the interior areas can be adjusted by dragging the gray
divider bars or by clicking on one of the triangles in the bar. The entire ISAW window can
be resized by dragging the corner of the window.

Figure 2-1, The ISAW Graphical User Interface (GUI).

The ISAW Menu Bar

The ISAW menu bar is used to load files, create views of the data, perform operations on
the data, and to select options. Loading and saving of data is initiated through the File

menu. The Edit menu allows you to remove nodes from the tree and/or modify DataSet
attributes. The View menu allows you to create DataSet viewers. Each viewer also in-
cludes a menu bar that can be used to change the viewer type and the options for that view.

The Operations menu is context sensitive. The operations shown in the menu are the
ones that are available for the object selected. If no DataSet is selected the operations
menu may be empty. The Macro menu contains macros or scripts developed for specific
instruments. The Help menu provides information about using ISAW.

The Tree View
The left panel of the GUI shows a tree view of loaded run files, sets of spectra (DataSet ob-
jects), and spectra (data objects). Each run file, shown as a folder icon with a file name, contains
a monitor set and a histogram set, labeled with an “M” and an “H” respectively. Spectra, or
group data, are shown as document icons in the tree. When you modify a DataSet, a new Data-
Set will be created and a new tree node will appear under the Modified node. DataSets and
containers for DataSets are displayed as folder icons in the tree.

Tabbed Panes
In the main ISAW panel there are a series of five tabs that are used to display various types
of information or interfaces. Simply click on the tab that you would like to view and a pane
will open underneath it.

I N T R O T O I S A W

7

CHAPTER

2

The Attributes Tab

The first tabbed pane shows the attributes of the selected DataSet or Data block. Attrib-
utes may be numbers or text data, and some attributes consist of more than one value.
This pane is updated dynamically when different spectra or DataSets are selected.

DataSet Log Tab

When a DataSet is selected in the tree view, the DataSet Log pane shows the log of actions
taken on the selected DataSet.

Session Log Tab

The Session Log tabbed pane shows a log of all of the commands issued during the cur-
rent session.

System Properties Tab

The System Properties tabbed pane displays a list of information about your system while
running ISAW. This information includes the ISAW build date and time, the amount of
memory currently used by the Java virtual machine (JVM), the Java version, and the paths
to some of the software components.

Live Data Connection Tab

When viewing live data, the Live Data Connection tab will appear to display data sets and
controls available from the currently connected live data server. To terminate a live data
connection, click the Exit button.

Scripts Tab

The Scripts tab allows users to create, modify, save, and load scripts for use in ISAW.
Scripts can also be reached through the Load Script item on the File menu or through the
Macros menu-bar item.

I N T R O T O I S A W

8

ISAW Data Objects
The ISAW data model consists of two basic components: the Data block, and
the DataSet.

The Data Block

The Data block deals with one list of values, and typically represents one spectrum. Data
blocks are used to store either a histogram or a function. A histogram is used to record
bin boundaries and total counts within a bin. A function is used to record samples at a
specific point. Each Data block also contains errors and an extensible list of attributes as-
sociated with the spectrum. These attributes include metadata such as the effective detec-
tor position, detector IDs, etc, which is needed for data reduction.

The DataSet

A DataSet can be described as a list of Data blocks; however, it might also represent a list
of all spectra from all pixels on an instrument, or a list of reduced spectra from multiple
runs. Like the Data block, each DataSet contains an extensible list of attributes that apply
to the entire DataSet.

DataSet Creation

Some basic operations such as addition and scalar multiplication are supported by all Data-
Sets; however, DataSets come from several different classes of instruments and some more
complex operations are not applicable to all types of instruments. Each DataSet maintains
a list of relevant operators that can be applied to it. The list of appropriate operators is
assigned to a DataSet when it is created by a DataSetFactory object.

DataSet Organization

An IPNS Run file generally contains data taken on a single sample at constant conditions.
It is often useful to combine the data from measurements taken under different conditions.
This can be done by merging DataSets from different run files. It can also be done by
combining DataSets into a single experiment. Currently there are no operations that can be
done on collections of DataSets, but it is useful to be able to store all the DataSets com-
prising an experiment in one file. To combine DataSets, select the DataSet or DataSets and
right click on them. You can then elect to “send to” a common container. The “Send to”
menu options are shown in the figure.

I S A W D A T A O B J E C T S

9

CHAPTER

3

Figure 3-1, The pop-up menu that is produced by right-clicking on selected DataSets.

DataSet Operators

Each operator is an object that includes a list of parameters that the user can specify
through a generic dialog box. When the user pulls down the Operations menu from the
menu bar the menu is automatically populated with the names of the operator objects in-
cluded in the current DataSet. When the user selects a particular operator, a generic dialog
box pops up that allows the user to specify the parameters needed by the operation. The
dialog box obtains the list of required parameters from the operator object and displays
appropriate GUI components based on the types of parameters that are to be specified.
This generalization of operators makes it very simple to create new operations and no
changes to the user interface are needed when a programmer adds a new operation. The
name of the new operation appears automatically on the operations menu and an appropri-
ate parameter input dialog box is generated automatically.

I S A W D A T A O B J E C T S

10

Reading and Saving Data
ISAW is designed in a modular fashion and its data input functions are per-
formed by data retrievers. The retriever that is used for a data file is com-
pletely determined by the extension of the file. For example, files with the ex-
tension .run would be implemented by the IPNS runfile retriever. To see a list
of the file extensions supported by ISAW, click on the File menu in the ISAW GUI, and
then select Open. In the dialog box that appears click the drop-down menu that says “Files
of type” as seen in figure 4-1.

The IPNS Runfile Retriever

The IPNS run file retriever is used to read IPNS binary data files. The Java code for this
retriever is included in a separate package called IPNS. To load an IPNS runfile, open the
File menu and click Load Data file(s). This will display a file chooser box in the default
directory that you specified in ISAWProps.dat. When an IPNS runfile is selected, ISAW
will recognize the file and load the IPNS run file retriever. Loaded files will then be dis-
played as nodes in the ISAW tree view.

The NeXus File Retriever

To load a NeXus file, open the File menu and select Load Data file(s). The same file
chooser window will appear; however, when you click on a NeXus file, ISAW will recognize
it and load the NeXus file retriever. If the NeXus file contains detector position informa-
tion that is compatible with ISAW then you will be able to perform operations in addition
to visualizing the data. It should be noted that the IPNS run file retriever is not required
for reading NeXus files.

Figure 4-1, A file chooser box that appears when selecting “Load Runfile(s)” from the File menu in ISAW.

Log File Retriever

Log files are often recorded in conjunction with data collection. At IPNS, the APS Self
Describing Data Set (SDDS) log files are used to record temperature, pressure, etc. (see
http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/SDDStoolkit.html). To open an
SDDS log file, open the File menu and select Load Data file(s). In the file chooser box
that appears (see figure 4-1), change the Files of type drop down box to SDDS files. The

R E A D I N G A N D S A V I N G D A T A

11

CHAPTER

4

http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/SDDStoolkit.html
http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/SDDStoolkit.html

log file retriever will split up the different log datasets read according to the units of the
variable saved.

Live Data Retriever

One of the primary reasons for using Java for ISAW was to allow easy integration with the
Internet. Java includes built-in tools to allow interaction with network objects on different
Internet nodes. Live data viewing in ISAW uses a data sender and a data server. A data
sender runs on the data acquisition system and a data server runs on the control com-
puter used to set up and control data collection for that instrument.

Figure 4-2, The communication paths and protocols for live data access.

The data sender uses the UDP protocol to send spectra to the data server. The data server
accepts packets from one or more data senders and sends spectra to ISAW clients. The
data server talks to data senders using UDP protocol and talks to ISAW clients using TCP
protocol.

To connect to a live data server, open the File menu, select Load Data, and then select the
Live submenu. This menu displays a list of the live data server names that were specified
in IsawProps.dat. To query a server, simply click on it in the Live submenu.

R E A D I N G A N D S A V I N G D A T A

12

Figure 4-3, The menu paths and associated display for a live data server
connection.

The only information that the Live submenu provides to the live data code is the node name.
Selecting an Internet node name in the Live submenu will inquire what DataSets are available on
that node. If a connection is successful, a tabbed pane listing the data source node name and
the live DataSets will appear in the main ISAW panel. This window displays a number of op-
tions including Show, Update, Auto, and Record. Checking the Show checkbox performs
one-time copy and display of the corresponding DataSet. The Update button will refresh the
current view of the data, and checking the Auto checkbox will refresh the data at a preset inter-
val as determined by the slider at the bottom of the live data pane. The Record button will send
a copy of the current live data DataSet to the ISAW tree for further processing.

Figure 4-4, The live data display dialog box.

In figure 4-4, DataSet 0 is a monitor DataSet. Checking the Show checkbox on the second
DataSet causes ISAW to read the remote data and pop up a view of the DataSet. Checking
the “Auto” box would cause ISAW to read the remote data at the interval selected by the
slider at the bottom.

Remote file servers

ISAW can retrieve datasets from remote file servers. The names, addresses, and port num-
bers of available remote file servers are specified in IsawProps.dat. When you attempt to
connect to one of the remote file servers on the menu, a dialog box will appear asking for
all the information needed to make the connection, including username and password.

R E A D I N G A N D S A V I N G D A T A

13

Figure 4-5, The Load Remote Data dialog box.

Saving Data
There are two ways of saving ISAW data. The first is by saving a DataSet object. This is
possible because all the objects in ISAW are Java serializable objects. The serialized format
is not guaranteed to remain the same in future versions of Java, so this method is not rec-
ommended for long-term storage of ISAW data. Currently, the only other way of saving
data from ISAW is to export it as a GSAS file. The GSAS data format consists of a title
card for the file plus a title card and data for each detector bank. The data is written ten
integers per row of data. The bank number is used to obtain information from another file
that contains calibration information for that bank. To ensure that users know which de-
tector group a bank number refers to, comment cards are usually included at the beginning
of the file. It is also possible to save ISAW DataSets as NeXus files.

To save ISAW DataSets as NeXus files, choose the desired DataSet and select “Save As”
from the File menu. In the “Save As” dialog box, select “NeXus File” for “Files of type”.
Then choose a location and a file name and click on the Save button.

R E A D I N G A N D S A V I N G D A T A

14

Data Viewers
ISAW provides several different methods for viewing data. In the ISAW data
model, the data and views of the data are separate. This means that changing
the data viewer will not change the data, but changing the data will change the
data viewer. Viewers can be thought of as observers of the DataSet; whenever
a DataSet changes, it notifies all observers of that DataSet so they can adjust their view.
This means that changes to the data will be updated in all of the viewers for that data as
they are made.

Viewer Menus

Each viewer contains a menu bar that is used for executing common functions as well as
viewer-specific functions. The File menu is usually used to save/load a DataSet, print the
viewer window, and close the viewer. Depending on the viewer, there may be different op-
tions available in this menu. The Edit menu is usually used to manipulate selections that
have been made in the viewer. This includes summing the counts of selected/unselected
spectra, deleting the counts of selected/unselected spectra, clearing select flags, and sorting
data. These options may also change depending on the viewer. The View menu is
constant in all viewers. This menu is used to either create a duplicate viewer window, or
change the current view to any of the supported viewer types. The Options menu is the
most varied menu between viewers. It allows many of the viewer-specific parameters to be
manipulated. For some of the viewers, the default value of these options can be adjusted
in ISAWprops.dat.

Image Viewer
The Image View

The Image Viewer works by drawing a line or block of lines for each detector group.
These lines are then rasterized and combine to form an image. The colors of each line cor-
respond to the intensity or number of counts at that time-of-flight (or other independent
variable). The data is normally rebinned horizontally to match the number of pixels avail-
able. It is also possible to select horizontal scrolling so that each pixel corresponds to one
channel or x value.

D A T A V I E W E R S

15

CHAPTER

5

Figure 5-1, An image view of time-of-flight neutron scattering data.

Line Graph Display
The graph area below the image is used to display the line graph for the currently pointed-
at row in the image view. It is possible to select additional spectra to view in the line graph
area by pressing the S key on the keyboard while a row is pointed at. To select additional
spectra beyond the second, press Control-S while a row is pointed at. To select a series of
contiguous spectra, first select the initial spectrum using S or Control-S, and then press
Shift-S while the final row is pointed at. You can also use the tree view to select spectra by
using the Set Flag option in the right-click menu to select the highlighted spectra.

View Controls
On the right side of the Image Viewer window there is an area with controls including X-
Scale, Brightness, and Auto-Scale. In the X-Scale box there are two text fields: Time(µs),
and Num Steps. The Time(µs) text field is used to display and adjust the time range, in
microseconds, used for the image view. To adjust this range, double-click on a number in
the readout and enter a new value. The Num Steps text field is used to display and adjust
the number of equally spaced bins for the selected time range. To adjust this range, enter a
value in between the brackets.

The Brightness slider is used to control the brightness of the image in the image display.
By moving the slider left or right, you can adjust the intensity of the pixels in the image
view to a suitable level. The Auto-Scale slider is used to control the scale of peaks seen in
the line graph display. If the slider is set to its far left setting, then an auto-scale feature will
be used which automatically fits the highest peak into the line graph display.

Cursor Readout Areas

D A T A V I E W E R S

16

Underneath the view controls there is an area containing several cursor readouts. These
readouts include time, the number of counts, the currently selected column/row, channel,
d-spacing, Q value, Q space coordinates, energy, wavelength, and integrate. The first cursor
readout area is called Image Data. The Image Data cursor readouts provide information
about the currently selected point in the image display. Below the Image Data area is an
area called Graph Data. The Graph Data cursor readouts provide information about the
currently selected point in the Line Graph Display. These readouts only respond when the
cursor is in the line graph display or the image display. If Graph Cursor Tracks Image
Cursor is unselected under the Options menu then these readouts will only respond when
the cursor is in the line graph display.

Image View Edit Menu

The Edit menu for the Image View contains a few common ways to manipulate the se-
lected spectra. The Sum option is used to sum all counts of either the selected or unse-
lected spectra. The Delete option is used to delete all counts of either the selected or un-
selected spectra. The Clear option is used to clear all select flags that have been placed.
The Sort By option is used to sort the line graph data. The vertical bar at the left of the im-
age illustrates the sort order of the spectra. Spectra are initially sorted according to their group
ID, but they may be sorted by any attribute. For more complex sorts involving up to three at-
tributes, open the Operations menu, then open the Edit List submenu, and finally choose Sort
on group attributes.

Image View Options Menu

The image view contains several options to change the appearance of the image in the Image
View window. The Color Scale option is used to select a color scale to use when ISAW draws
the image. You can view the current color scale in the area just beneath the X-Scale area. The
Graph Selected option can be used to graph the selected line graphs. Up to 16 selected line
graphs can be graphed in this way. The Graph Cursor Tracks Image Cursor is used to allow
graph data readouts to respond when the cursor is in the image display. The Horizontal Scroll
should be selected if you want every vertical line on the graphs to represent the same time bin.
This allows for viewing a long range of time values accurately. If it is left unselected, bins will be
compressed to fit inside the view area. The Graph Rebinned Data option is used to rebin data
automatically so that each vertical line represents the same time. The Link Views option is used
to link the current view with any additional views of the same DataSet that also have this option
selected. This is on by default so that pointing the cursor in one view will affect all views of the
same data.

Zoom Control

Spectra can be extremely detailed and contain thousands of values. To more closely exam-
ine the data, it is possible to zoom in to a particular region. The zoom region is specified
by holding down the middle mouse button and dragging a box around the desired area.
For computers with a single-button mouse, simply hold the shift key while dragging a box
with the mouse button. To zoom out completely, double-click in the image area. This
zoom feature can also be used with the Line Graph Display.

D A T A V I E W E R S

17

3D Viewer
The 3D View

The 3D view is designed to view detector positions and 2D slices of time-of-flight data in
three-dimensional space. Each detector is represented by a different square (2D slice) and
is placed on a circular path within the three-dimensional workspace. At the middle of the
circular path is the origin with xyz axes. The neutron beam is represented by a red line
striking the origin.

Figure 5-2, the 3D View of time-of-flight data in ISAW.

View Controls

On the right side of the 3D Viewer window there is an area with controls including X-
Scale, Brightness, and View Control. In the X-Scale box there are two text fields: Time
(µs), and Num Steps. The Time(µs) text field is used to display and adjust the time range,
in microseconds, used for the 3D view. To adjust this range, double-click on a number in
the readout and enter a new value. The Num Steps text field is used to display and adjust
the number of equally spaced bins for the selected time range. To adjust this range, enter a
value in between the brackets. The Brightness slider is used to control the brightness of
the 2D slices in the 3D view. By moving the slider left or right, you can adjust the intensity
of the pixels in the 2D slices.

In the area marked View Control there are three sliders: Altitude, Azimuth, and Distance.
The Altitude slider is used to control the angle above or below the horizontal plane in the
3D view. The Azimuth slider is used to control the rotation around the vertical axis in the

D A T A V I E W E R S

18

3D view. The Distance slider is used to control the view distance from the origin in the
3D view.

Time-of-Flight Controls

The time-of-flight controls are used to adjust the time-of-flight data that is displayed in
each slice in the 3D view. These controls are similar to those of any common video player.
The << and >> buttons are used to auto-step through time in the direction of the arrows.
This auto-step will occur until you press the pause button. The Pause button is repre-
sented by the symbol || and is only used to pause the auto-step feature. The < and > but-
tons are used to step through the time-of-flight data one frame at a time in the direction of
the arrow.

Pixel Data Readouts

The pixel data readouts include time, the number of counts, the currently selected column/
row, channel, d-spacing, Q value, Q space coordinates, energy, wavelength, and integrate.
These readouts provide information about the currently selected pixel in a 2D slice within
the 3D view.

3D View Edit Menu

See the Image View Edit Menu section...

3D View Options Menu

The Options menu provides a few options for adjusting the appearance of the 3D view.
The Color Scale option is used to select a color scale for the 2D slices that appear within
the 3D view. The current color scale can be viewed under the X-Scale area. The Draw
Groups option is used to draw an asterisk at the center of the pixel element. The Draw
Detector Segments submenu is used to select how detector segments are drawn in the 3D
view. The Link Views option is used to link the current view with any additional views of the
same DataSet that also have this option selected.

HKL Slice Viewer
The HKL Slice Viewer

The HKL Slice Viewer is designed to view two-dimensional slices of DataSets in Qxyz space.
This is most commonly used with single crystal diffraction data and requires an orientation
matrix to be loaded. In the HKL slice view there are two axes, x and y, which both measure dis-
tance within HKL planes in units of inverse Angstroms.

Loading an Orientation Matrix

Opening the HKL Slice Viewer requires that you load an orientation matrix into the ISAW
tree. An orientation matrix, or .mat file, is used by ISAW to describe the sample with re-
spect to the diffractometer angles. These files can be written either by the user or auto-
matically by software such as the Reciprocal Lattice Viewer. The following is a sample
orientation matrix as outputted by the Reciprocal Lattice Viewer.

 0.070018 0.021537 0.131717

 0.021889 0.076477 -0.071833

D A T A V I E W E R S

19

 -0.050633 0.051088 0.031275

 7.324 10.217 12.994 97.610 100.479 66.227 873.089

 0.000 0.000 0.000 0.000 0.000 0.000 0.000

When you have an orientation matrix, you can load it into the ISAW tree by clicking on the
Operation menu, then the Attributes submenu, and finally choose the Load Orientation
Matrix option.

Figure 5-3, the HKL Slice View of time-of-flight data in ISAW.

View Controls

The view controls are always visible regardless of which tab is open. The Intensity Slider is
used to adjust the intensity of the two-dimensional slice in the HKL slice view. The Pointed At
cursor readout area will display the X and Y coordinates of the currently pointed at point within
the HKL slice view.

View Tab

The HKL Slice Viewer’s view tab is used to change the appearance of the HKL slice view and to
add overlays to the view for visual reference. The Color Scale option is used to select a color
scale for the two-dimensional slice that appears within the HKL slice view. The Marker
Overlay option is used to display markers at points with integer HKL values. Selecting this
option requires an orientation matrix. The Axis Overlay option is used to display a grid
axis overlay in the HKL slice view. To modify the grid’s appearance, click the Edit button.
The Selection Overlay is used to display a selection overlay in the HKL slice view. To add

D A T A V I E W E R S

20

the overlay, simply click and drag a box around the desired area within the HKL slice view
while the Edit window is open. To modify the overlay’s appearance, click the Edit button.
The Annotation Overlay option is used to display an annotation overlay in the HKL slice
view. To change the annotation’s appearance, click the Edit button.

Slice Tab

Slice in Qxyz space info...

The Slice Tab is used to manipulate the slice and HKL planes. The Select Qxyz Plane
area is used to adjust the size and position of the Qxyz plane. The CN Tab is used to select the
center and the normal in either Qxyz or HKL coordinates. The CPP Tab is used to select the the
center, a vector to represent one unit in the x-direction, and a vector to represent one unit in the
y-direction. The CNP Tab is used to select the center, normal, and one point on the plane.
The CQxyz Tab is used to select the center and choose to step along planes of constant H,K,
or L or constant Qx, Qy, or Qz.

The Select Plane Size area is used to specify a plane size for the HKL slices. The Step
Size option is used to specify the step size for a series of slices in the HKL view. The
Width and Height fields are used to specify the width and height of the slice shown in the
HKL slice display. The Thickness field is used to specify a thickness for each HKL slice.

The Step In/Out area is used to control the step setting for the HKL viewer. The Step
Depth input is used to specify how far the viewer should step in or out of the slice. The
controls consist of < and > buttons. Pressing the < button will cause the viewer to step
out once according to the Step Depth setting, and pressing the > button will cause the
viewer to step in once according to the Step Depth setting.

Conversions Tab

The Conversions Tab contains a number of cursor readouts that provide information
about the currently selected point in the HKL slice display including time, the number of
counts, the currently selected column/row, channel, d-spacing, Q value, Q space coordi-
nates, energy, wavelength, and integrate.

Saving DataSets with the HKL Slice Viewer

The HKL Viewer File menu provides a save function that allows you to save the current
DataSet as a new file. Supported formats include NeXus, GSAS, ISAW XML, ZIP, and
ISD.

HKL Slice Viewer Edit Menu

See the Image View Edit Menu section...

HKL Slice Viewer Options Menu

The Link Views option is used to link the current view with any additional views of the same
DataSet that also have this option selected.

Scrolled Graph View
The Scrolled Graph View

D A T A V I E W E R S

21

The Scrolled Graph view is designed to view all of the spectra for a DataSet in a separate line
graph. The left side of the window contains the line graph display with a vertical scroll bar. The
line graphs are arranged in ascending order. Like the line graph display in the Image Viewer, the
Scrolled Graph View allows you to select spectra by setting select flags. To set a select flag, point
the mouse cursor at a graph and press s to set a select flag. To select additional spectra beyond
the first, hold Control while pressing s. To select a range of spectra, first select a starting spec-
tra, then hold Shift and press s on the last spectra in the series that you would like to select. It is
also possible to toggle a select flag on and off. To do this, press T while pointing at a graph. If
the graph is unselected, then this will add it to the group of selections. Pressing T again will re-
move it from the group of selections.

Figure 5-4, the Scrolled Graph View for time-of-flight data in ISAW.

View Controls
On the right side of the Scrolled Graph View window there is an area with controls
including X-Scale and Auto-Scale. In the X-Scale box there are two text fields: Time(µs),
and Num Steps. The Time(µs) text field is used to display and adjust the time range, in
microseconds, used for the line graphs. To adjust this range, double-click on a number in
the readout and enter a new value. The Num Steps text field is used to display and adjust
the number of equally spaced bins for the selected time range. To adjust this range, enter a
value in between the brackets.

The Auto-Scale slider is used to control the scale of peaks seen in the line graphs. If the
slider is set to its far left setting then an auto-scale feature will be used which automatically
fits the highest peak into the line graph display.

Graph Data Cursor Readouts

D A T A V I E W E R S

22

The Graph Data cursor readouts provide a variety of information abut the currently
pointed-at point in a line graph including time, the number of counts, the currently selected
column/row, channel, d-spacing, Q value, Q space coordinates, energy, wavelength, and
integrate.

Scrolled Graph View Edit Menu

See the Image View Edit Menu section...

Scrolled Graph View Options Menu

The Options menu contains several options for adjusting the appearance of line graphs in
the Scrolled Graph view. The Horizontal Scroll option is used to make every vertical line
on the graphs represent the same time bin. This generally allows for more accurate viewing
of a long range of time values. If this option is left unselected, then bins will be com-
pressed to fit inside the view area. The Graph Rebinned Data option is used to rebin data
automatically so that each vertical line represents the same time. The Link Views option is
used to link the current view with any additional views of the same DataSet that also have this
option selected.

Selected Graph View
The Selected Graph View

The Selected Graph View is designed to allow users to view the time-of-flight line graphs and
their associated counts for user-selected data blocks. The line graph display shows the selected
spectra as line graphs with scattering intensities as the dependent variable and the user-defined x-
value as the independent variable. The default x-value is time-of-flight in units of microseconds.

Figure 5-5, The line graph display in the Selected Graph View.

D A T A V I E W E R S

23

Selected Graph View Edit Menu

See the Image View Edit Menu section...

Selected Graph View Function Controls

The Selected Graph View Function Controls are used to modify the appearance of graphs
in the line graph display. The function controls can be accessed by selecting the Function
Controls option in the Options menu. The function controls window will then appear
with several options that can be adjusted. The Line Selected option allows the user to se-
lect a line graph, or Group ID, to modify. The next three options – Line Style, Line
Width, and Line Color, are used to modify the line style for the currently selected line
graph in the Line Selected menu. For example, to change the color of a line graph, choose
the Group ID of the line graph that you would like to modify from the Line Selected
menu, and press the Line Color button to choose a color.

Figure 5-6, The function controls window for the Selected Graph View.

The Point Marker, Point Marker Size, and Point Marker Color are used to create a
point marker in the graph display and change the marker’s size and color. The Error Bars
and Error Bar Color is used to display and edit the error bars in the graph display for the
currently selected Group ID. Shift and Shift Factors are used to specify a shift for the
graph. The Shift option is used to specify a type of shift for the graph, while Shift Fac-
tors is used to modify the shift factor that will be applied to the graph.

The next three options are used to display overlays in the graph view. The Axis Overlay is
used to display additional axes information on the graph. The Edit button can be used to
change its appearance. The Annotation Overlay option is used to add text to the graph
display. This can also be edited by pressing the Edit button. The Legend Overlay option
is used to add a legend to the graph display. Once again, its appearance can be modified by
pressing the Edit button.

D A T A V I E W E R S

24

The next three controls are used to manipulate the axes for the graph. The Scale option is
used to edit the X and Y range for the graph. The Cursor readout displays the current XY
coordinates of the cursor in the graph display. The Logarithmic Axis option is used to
specify a logarithmic scale for the X and Y axis.

Selected Graph View Options Menu

Other than the Function Controls, there are two other options in the Options menu. The
Show Pointed At option is used to show the currently pointed at data block in a linked view.
The Link Views option is used to link the current view with any additional views of the same
DataSet that also have this option selected.

Difference Viewer
The Difference Viewer

The Difference Viewer is designed to allow users to view the difference between two line graphs
for user-selected data blocks. Before launching the Difference Viewer, there must be at least two
selected line graphs, or Group IDs. To do this, simply double click the Group IDs that you
would like to select. You can also click on a Group ID, then right-click, and choose Select
Highlighted Data Blocks. The Difference Viewer can then be opened by selecting it from the
Viewer menu or the right-click menu. In order to use the right-click menu, first select the
Group IDs, then click on the histogram icon (usually labeled H1_xxxx), then right-click and se-
lect the Difference Viewer.

The difference view shows the selected spectra and difference spectrum as line graphs with scat-
tering intensities as the dependent variable and the user-defined x-value as the independent vari-
able. The default x-value is the x-scale of the selected spectra. By default, the selected spectra
will be shown in blue near the top of the graph along the zero line and the difference spectrum
will be shown in magenta beneath the zero line. The difference spectrum will not be scaled on
the x axis by default; however, this can be changed by selecting Shift Difference in the Differ-
ence Options window.

D A T A V I E W E R S

25

Figure 5-7, The difference view for time-of-flight data. The selected Group ID spectra are near the top of
the graph in blue, and the difference spectrum is below in magenta.

Difference Viewer Edit Menu

See the Image View Edit Menu section...

Difference Viewer Function Controls

The Difference View Function Controls are used to modify the appearance of line graphs
in the difference view. The function controls can be accessed by selecting the Function
Controls option in the Options menu. The function controls window will then appear
with several options that can be adjusted. The Line Selected option allows the user to se-
lect a line graph, or Group ID, to modify. The next three options – Line Style, Line
Width, and Line Color, are used to modify the line style for the currently selected line
graph in the Line Selected menu. For example, to change the color of a line graph, choose
the Group ID of the line graph that you would like to modify from the Line Selected
menu, and press the Line Color button to choose a color.

The Point Marker, Point Marker Size, and Point Marker Color are used to create a
point marker in the difference view and change the marker’s size and color. The Error
Bars and Error Bar Color is used to display and edit the error bars in the difference view
for the currently selected Group ID. Shift and Shift Factors are used to specify a shift for
the graph. The Shift option is used to specify a a type of shift for the graph, while Shift
Factors is used to modify the shift factor that will be applied to the graph.

The next three options are used to display overlays in the graph view. The Axis Overlay is
used to display additional axes information on the graph. The Edit button can be used to
change its appearance. The Annotation Overlay option is used to add text to the graph
display. This can also be edited by pressing the Edit button. The Legend Overlay option

D A T A V I E W E R S

26

is used to add a legend to the graph display. Once again, its appearance can be modified by
pressing the Edit button.

The next three controls are used to manipulate the axes for the graph. The Scale option is
used to edit the X and Y range for the graph. The Cursor readout displays the current XY
coordinates of the cursor in the graph display. The Logarithmic Axis option is used to
specify a logarithmic scale for the X and Y axis.

The Difference Options button is used to modify the appearance of the difference graph
in the difference view. Pressing the Edit button will open the Difference Options win-
dow. The first options in this window are the Difference menus. These drop-down menus
are used to select the Group IDs of the spectra that will be used to produce the difference
spectrum. The first menu is used to select the Group ID that will be operated on, and the
second menu is used to select the Group ID that will be subtracted from the first Group
ID. Beneath the Difference menus is a checkbox called Shift Difference. If this box is
checked, then the difference spectrum will be placed beneath the selected Group IDs with-
out any scale. If the box is unchecked, then the difference spectrum will be placed on the
same scale and axis as the selected Group IDs.

Selected Table Views
The Selected Table Views

The selected table views are designed to view user-selected spectra, or Group IDs, as a ta-
ble of values that can be viewed and sorted in a variety of different ways.

The GRX_Y Table

The GRX_Y table is used to produce a table of the selected spectra with either X vs. Y or
time bin boundary vs. Y. It is usually used when all of the spectra do not have the same X
values. Spectra are listed vertically in ascending order and each X-value represents the time
bin for that spectrum, while each Y-value represents intensity.

Parallel y(x) Table

The Parallel y(x) Table is used to produce a table of the selected spectra with either X vs. Y
or time bin boundary vs. Y. This table displays spectra horizontally in ascending order.
Each X-value represents the time bin for that spectrum, while each Y-value represents in-
tensity.

The Parallel y(x) Table also contains special controls and readouts. Checking the Show All
Groups checkbox will display all available groups in the table view. If this option is not
checked, then only user-selected groups will be displayed in the table view. The Format
text box is used to enter Fortran formats such as F5.3, I4, E8.2, etc. The Table Readout
Area provides information about the currently selected cell in the table view including time,
the number of counts, the currently selected column/row, channel, d-spacing, Q value, Q
space coordinates, energy, wavelength, and integrate. These readouts only respond when
the cursor is in the image area.

D A T A V I E W E R S

27

The Parallel y(x) Table also contains a special viewer menu called Select. The Rectangle
option under this menu is used to mark the spectra corresponding to the selected rectangle
from the table view.

Instrument Table

The Instrument Table is used to produce a table that lists attributes of all spectra. The at-
tributes that are displayed can be specified by selecting the desired fields. The table can
then be sorted, and selected spectra in a given range can be marked. The table displays se-
lected spectra vertically in ascending order, and default fields include group ID, scattering
angle, and total count.

The Instrument Table also contains several special controls and readouts. The Add Field
option is used to add a field to the current table. The Delete Field option is used to delete
a field from the current table. The Sort on Field option is used to arrange values for a
specific field in ascending order. To use this option, click on a cell in the field that you
would like to arrange, and click the Sort on Field button. The Format text box is used to
enter Fortran formats such as F5.3, I4, E8.2, etc. The Table Readout Area provides in-
formation about the currently selected cell in the table view including time, the number of
counts, the currently selected column/row, channel, d-spacing, Q value, Q space coordi-
nates, energy, wavelength, and integrate. The readouts only respond when the cursor is in
the image area.

The Instrument Table also uses a special viewer menu called Select. The Rectangle op-
tion under this menu is used to mark the spectra corresponding to the selected rectangle
from the table view. The Clear All option is used to clear all select flags from the table.
The New Attribute option is used to add row, column, crate, slot, and input attributes to
the table.

Common Viewer Menus

The selected table views all contain similar information in their menus. The File menu can
be used to print the viewer window as it appears on the screen, save the current view as a
new DataSet, and save the viewer window as a JPEG picture file.

The Edit menu contains a Spreadsheet option that can be used to copy the selected area
of the current table for pasting into a spreadsheet program. An integrate function is also
available for the Spreadsheet option.

The Options menu is used to add information to the current table view. The Show Errors
option is used to display a new field within the table that displays errors. The new field
name will begin with Er:. The Show Indices option is used to display a new field within
the table that displays indices. The new field name will begin with Ind:.

Table Generator
The Table Generator

The Table Generator is used to create a custom table that is arranged by user-specified
fields. The viewer contains three basic columns that are used to create a custom table. The

D A T A V I E W E R S

28

first column is called Possible Fields. It contains a list of fields available for use within a
table in ISAW. To add one of the fields to a table, simply select it and press the Add but-
ton. This action will move the field into the Display Fields column. This column is used
to display all of the fields that will be used in the table. Pressing the Up and Down but-
tons will change the order of the display fields, and pressing Remove while a field is se-
lected will remove it from the Display Fields column. The last column is the Controls col-
umn. It is used to modify the appearance of the table, save the table, create the table, and
choose data for the table. The Selected Indices readout displays the identifying numbers
of the currently selected data blocks. The Select Group Indices button will open a text
field that allows you to enter the Group ID of the blocks that you would like to select.
Check the Use All Groups checkbox to add all available groups for the current DataSet to
the table. The Order menu is used to change the appearance and layout of the table.

Figure 5-8, The ISAW Table Generator window.

In addition to the variety of customization options in the Table Generator, there are also
several different ways to view the table data that is produced by this viewer. The Save to
File button is used to save the current table as a separate file that can be opened by any
program; however, when saving, it is necessary to assign a file extension that is supported
by the program that will be used to open it. The Make a Table button is used to display a
table with the currently selected display fields and group indices. The table will be dis-
played in a new window within ISAW. The Write to Console button is used to display ta-
ble data in the console that ISAW was launched from. For example, in Mac OS X, the table
data will be displayed in the system’s bash terminal. In Windows XP, the table data will be
displayed in the system’s command prompt window.

D A T A V I E W E R S

29

Reciprocal Lattice Viewer
The Reciprocal Lattice Viewer

The Reciprocal Lattice Viewer is designed to allow users to work with single crystal diffrac-
tion data in a three-dimensional environment by displaying voxels in reciprocal space that
correspond exactly to time-of-flight histogram bins from the area detectors. To launch the
Reciprocal Lattice Viewer, click on the Macros menu, then open the Instrument Type sub-
menu, then open the TOF_NSCD submenu, and then click on SCDReciprocalLattice.
This will prompt a new window to open that contains several customization options.

The Reciprocal Lattice Viewer Launch Window

After selecting the Reciprocal Lattice Viewer from the Macros menu, a launch window will
appear with several customization options. Modifying these correctly is an important step
in initializing the viewer for use. The first option is Data Directory. Use this option to
choose the directory where your run data is stored. The next option is called Calibration
File and it is used to choose a calibration file for the run data. The Orientation Matrix
option is used to select an orientation matrix for the run data. It is not necessary to load an
orientation matrix at this point if you plan to create one using the Reciprocal Lattice
Viewer.

The Run Numbers field is used to specify all of the run numbers that will be used by the
Reciprocal Lattice Viewer, separated by commas. A series os runs can be delineated by
separating values with a colon. For example, you might want to use all of the run files
from 8336 to 8339, and the run file 8341. To specify these run numbers, you would type
8336:8339,8341 into the Run Numbers field.

The next three options have to do with threshold levels and contour levels. The first op-
tion is called Threshold Levels and is used to limit how many counts are displayed in the
viewer. If the value is set too low then many low-count bins will be included which causes
the system to slow down; however, in cases where the experimental data is weak, then the
threshold level can be reduced to increase the number of bins that appear in the viewer. A
normal value for this setting is 60.

It is also possible to view contour levels in the Reciprocal Lattice View. The Show Con-
tours option is used to add a contour surface to the voxels in the Reciprocal Lattice View.
It should be noted that selecting this option requires significantly more computing power.
Once contours are enabled, it is possible to define how many should be included in the
view. The Contour Level option is used to limit how many contour levels are displayed in
the viewer. A high setting for this option is usually recommended for the initial run.

The next two options deal with customization of the reciprocal space graph. The first op-
tion is called Show Regions. Checking this checkbox will display a three-dimensional out-
line of the volume covered by the detector for the instrument that collected the data. The
run numbers for the data will be displayed on the large end of the region outline. The sec-

D A T A V I E W E R S

30

ond option is called Show HKL Markers and is used to display marks at integer HKL
points in the Reciprocal Lattice View. Selecting this option requires that an orientation
matrix is loaded.

The final option is Calculate FFTs. Checking this checkbox will allow for initial calcula-
tion of FFTs when the data is loaded. FFTs are covered in more detail later in the Calcu-
late FFT’s of Projections section.

When you are finished making changes to the launch window, press Apply and the
Reciprocal Lattice Viewer will open.

Figure 5-9, The Reciprocal Lattice Viewer launch window.

View Controls
The Reciprocal Lattice Viewer uses a three-dimensional environment to display time-of-
flight data in reciprocal space. A series of controls similar to those found in the 3D Viewer
are used to help you navigate this environment. The Altitude slider is used to control the
angle above or below the horizontal plane that the Reciprocal Lattice Viewer draws. The
Azimuth slider is used to control rotation around the vertical axis in the viewing window.
The Distance slider is used to control the distance from the origin that is displayed in the
viewing window. It is often useful to use your keyboard’s arrow keys for making fine ad-
justments to these sliders.

The Reciprocal Lattice Viewer also uses two different types of projection for viewing data
in three dimensions. The Projection checkbox is used to toggle between orthographic
projection and perspective projection. When this box is checked, an orthographic projec-
tion will be used; otherwise a perspective projection will be used.

D A T A V I E W E R S

31

Figure 5-10, The Reciprocal Lattice Viewer showing single-crystal diffraction data in reciprocal space.

The View Tab
The View Tab is used to change how data appears in the Reciprocal Lattice Viewer. The
first options are the Range of |Q| Shown entries. These entries are used to restrict the
range of |Q| that will be displayed in the viewing window. Peaks that have |Q| outside
the [Q_min, Q_max] interval will not be shown. Enter the desired interval in the form
[Q_min : Q_max]. The default interval is [0 : 30].

The next items in the View Tab are the threshold sliders. The Peaks Threshold slider is
used to control the cutoff level above which bins are displayed and used in subsequent
processing. In cases where experimental data is weak, it is useful to move this slider to a
lower setting so that low-count bins can be viewed.

It is possible to toggle contour surfaces on and off. If the Iso-surface checkbox is
checked, then contours will be drawn over voxels in the Reciprocal Lattice View. The Iso-
surface Threshold slider can then be used to control the single level at which iso-level
contours are drawn. The lower the setting on this slider, the more computing power that
will be required to draw the contours.

The Detector Coverage checkbox is used to turn on and off a three-dimensional outline
of the volume covered by the detector for the instrument that collected the data. The run
numbers for the data will be displayed on the large end of the region outline.

The final option is called Show HKL Markers and is used to display marks at integer
HKL points in the Reciprocal Lattice View. Selecting this option requires that an
orientation matrix is loaded.

D A T A V I E W E R S

32

Selected Point Data

The Reciprocal Lattice Viewer can also provide data about the selected point in the
reciprocal space. These readouts will respond when a point on a voxel is selected and in-
clude time, the number of counts, the currently selected column/row, channel, d-spacing,
Q value, Q space coordinates, energy, wavelength, and integrate.

Calculate FFTs of Projections

The final button in the View Tab is called Calculate FFTs of Projections. The Calculate
FFT’s of Projections operation is used to approximate the direction of normals for planes
in a crystalline lattice within reciprocal space. The direction of three linear independent
plane normals can then be used to generate an orientation matrix for the sample.

FFT, or Fast Fourier Transform, projects the Q values in reciprocal space into one-
dimensional lines pointing in various directions. These lines are Fourier transformed to
identify directions that represent normals to families of planes in reciprocal space. The
Fourier transformed projected data is then displayed as rows in an image view where peaks
are arranged in order of increasing d-spacing.

The plane normals are displayed in the three-dimensional view as a sequence of light blue
boxes pointing in the direction of the normal. The distance between these boxes corre-
sponds to the length of an edge of the unit cell in real space. The d-spacing can be found
on the border of the graph part of the image view.

Planes Tab

The Planes Tab provides tools for specifying user-defined HKL planes in reciprocal space.
This is useful if you want to create an orientation matrix based on specific planes of sym-
metry that you choose.

The first section contains several general tools for use in defining planes. The first is called
Qxyz Readout, and it displays the Qxyz coordinates of the currently selected peak. To
select a peak, simply click on a point on a voxel in reciprocal space. The Origin Control is
used to change the view center of the viewer window by clicking on a peak and then press-
ing the Select button. Pressing the select button will also choose the initial point for two
user-specified vectors that are used to identify a family of planes. The Reset button will
reset the view center to the Qxyz origin.

The next two options are used to specify vectors that help define planes of symmetry in
reciprocal space. The (+)Control is used to change the endpoint of one user-specified
vector to the last peak that you clicked on. The (*)Control is used to change the endpoint
of a second user-specified vector to the last peak that the user clicked on. By defining vec-
tors with these buttons, it is possible to specify a plane of symmetry using the following
tools.

Constant h Planes, Constant k Planes, Constant l Planes

These areas allow you to specify a family of planes with a constant h, k, or l value in
reciprocal space based on the vector that is defined with the tools under the Planes Tab.
The first option is called User. The User button will create the constant h, k, or l plane
information based on the normal to the plane determined by the two user-specified vectors
+ and *. The FFT button is used to create the constant h, k, or l plane information based
on the normal to the plane determined from the last selected row in the FFT image view
window. This window can be opened by choosing the FFTs of Projections button in the

D A T A V I E W E R S

33

View Tab. The Filter On/Off option is used to restrict visible data to those which lie
within 0.1 units of an integer value.

When constant h, k, and l planes have been defines, the corresponding orientation matrix
can be written to a file by clicking on Write Orientation Matrix and then specifying a file
name. A list of the bins above the specified threshold can also be written to a file by click-
ing on Write Peak Data File and then specifying a file name.

SAND Wedge Viewer
The SAND Wedge Viewer

The SAND Wedge Viewer is an interactive analysis tool for visualizing small-angle neutron
diffraction data, including the ability to make wedge, double wedge, annular, and elliptical
selections. Once a selection is made on the image, the graph will display the intensity values
per hit as a function of distance in Q. To run the SAND Wedge Viewer, open the Macros
menu, then open the Instrument Type submenu, then open the TOF_NSAS submenu,
and then select Sand Wedge Viewer. A file-chooser box will appear to select the data file
that you would like to analyze. Click the Apply button to launch the SAND Wedge Viewer.

Figure 5-11, The SAND Wedge Viewer launch window.

Opening Files
In order to analyze data properly, the SAND Wedge Viewer requires that you first run re-
duction and integration routines on your small-angle diffraction DataSet. The result of
these routines should be a .dat file with four columns of numeric data: x-values, y-values,
intensity, and error. By default, the Sand Wedge Viewer assumes that data in the .dat file
will construct a 200 row by 200 column array. If other dimensions are desired then the file
should contain header information. Lines with header information should begin with a #
symbol, followed by the attribute with a colon (:), and then finally the value. For example,
to specify a data file having dimensions of 100 x 150, with an x-axis labeled “Angle” in
units of degrees, you would enter the following into the header of the data file.

ROWS: 100
COLUMNS: 150
X Label: Angle
X Units: Degrees

D A T A V I E W E R S

34

The attributes that are supported by the SAND Wedge Viewer include row, column, x label,
y label, z label, x units, y units, and z units. The attribute labels are not case sensitive.

The SAND Wedge View

After clicking Apply on the SAND Wedge Viewer launch window, the SAND Wedge
Viewer should open and appear similar to the image in Figure 5-11. If it does not, go back
to the launch window and make sure that you are loading a correctly formatted .dat file.

Figure 5-12, The SAND Wedge Viewer.

The SAND Wedge graph can be seen in the large left part of the SAND Wedge Viewer. It
has axes of Qx and Qy, both measured in inverse Angstroms. The file name of the cur-
rently viewed data is shown at the top of the graph and the intensity scale is shown at the
right of the graph. The intensity scale is linked to the image view so that when an area in
the SAND Wedge graph is selected, the corresponding intensity will be indicated on the
intensity scale. The intensity can be adjusted by moving the Intensity Slider left and right.
Moving the intensity slider will also modify the intensity scale to reflect the appropriate in-
tensity values for the SAND Wedge graph.

Common Readouts

The Selection Editor can be found on the right side of the SAND Wedge Viewer. The first
option is the Intensity Slider. This slider is used to adjust the intensity of the currently
displayed image in the SAND Wedge View. The Pointed At boxes are used to display the
x,y coordinates of the currently pointed-at peak in the SAND Wedge View.

SAND Selection

D A T A V I E W E R S

35

The next area is displayed when the SAND button is selected on the right side of the
SAND Wedge Viewer. This is used to manually specify and edit selections in the SAND
Wedge Viewer. The first option, Sum Along, is used to specify whether selections will be
summed along rings or radial lines. Underneath this option is the selection menu. This
menu is used to choose from currently existing selections in the SAND Wedge View. The
Field Entries area is used to specify the type of selection that you would like to make on
the image – wedge, double wedge, annular, and ellipse. The fields below this, marked X
Center, Y Center, X Radius, and Y Radius, are used to enter the selection parameters. Once
a selection is made on the image, the graph will display the intensity values per hit as a func-
tion of distance in Q.

Image Selection

The Image Selection method for making selections and annotations can be used by clicking
on the Image button on the right side of the SAND Wedge Viewer. These options are
used to add overlays to the image, each with a different function and appearance. Clicking
on the checkbox under each option will enable the corresponding overlay, and clicking the
Edit button next to each checkbox will open a dialog box containing several options for
changing the appearance of each overlay. To add an overlay to the image, simply open the
Edit box, click on the type of marker to add to the image, and then click and hold in the
image view to edit the marker’s shape and location. When the Selection Overlay is used, a
window will appear displaying the a graph with the intensity values per hit as a function of
distance in Q.

Figure 5-13, The Selection Overlay Edit window.

SAND Wedge Viewer File Menu

The SAND Wedge Viewer File Menu is used to load and save a variety of data from the
SAND Wedge Viewer. The first option, Open Project, is used to open a previously saved
session including all project-specific information. Similarly, the Save Project option is used
to save all session-specific information, such as selections or annotations, to a user-named
file with the extension .isv.

D A T A V I E W E R S

36

The Print Image option is used to print the currently displayed image in the Sand
Wedge View. The Make Image option is used to to save the image that is currently dis-
played in the Sand Wedge View to a .jpeg file.

SAND Wedge Viewer Option Menu

The SAND Wedge View Option Menu allows for adjustments to the image and data dis-
play. When a selection is made in the SAND Wedge Viewer, a results window will ap-
pear. The Hide Results option is used to hide the results window, and conversely Show
Results will cause the results window to reappear.

The next option, Save Results to File, is used to save the contents of the result window
to a separate file. The new file will have three columns: Q, Intensity, and Error Bounds.
Information about the region is listed at the top of the file prefixed by a # symbol. If
multiple selections are made, only the last selection can be written to a file.

Note: All selections must be made before using the View Results or Save Results options.

The Save User Settings option is used to save your preferences automatically into the
SandProps.isv files in your home directory. This option will not save project specific
information such as selections or annotations. Use the File menu’s Save Project to save
project specific details.

The Color Scale option is similar to those found in other viewers, and allows you to
choose a color scale to use in the SAND Wedge Viewer image view. The scale will be
displayed on the right side of the graph with its corresponding intensities.

The Preserve Image Aspect Ratio option is used to ensure that the original aspect ratio
of the image is preserved when making adjustments to the image or window. Deselect-
ing this will fit the image view into the window to match its shape and size.

D A T A V I E W E R S

37

Scripts
ISAW provides several ways for users to interact with their data. One of these
ways is through the use of scripts. A script is a series of commands that is
executed to perform a specific function. In ISAW, scripts can be used to per-
form virtually any task including wizard and viewer functions, and all scripts
can be run in the command pane or in a wizard.

The Scripts Tab

To begin using scripts in ISAW, click the Scripts tab in the main ISAW pane. The Scripts
tab consists of several buttons, a program editor, and an immediate editor. The Program
Editor field is the place where most of your script commands will be entered. This field
can be used to write scripts of any size, and it is also where loaded scripts will appear. Un-
derneath the Program Editor is a pane called Immediate. This pane is used to write and
immediately execute a script. This should generally be used only by experienced script
writers. At the bottom of the window is a pane called Status. The Status pane is used to
display error messages and outputs.

Near the top of the Program Editor pane is a series of buttons that can be used to inter-
face with the Program Editor. The first button is called Run Script, and it is used to exe-
cute the script that appears in the Program Editor pane. Next to the Run Script button is
the Open Script button. This button is used to open a file chooser window that can be
used to open a previously saved script. The default directory for this file chooser window is
the ISAW Scripts directory, but any directory can be specified by editing the Script Path op-
tion in ISAWprops.dat. The Reset button is used to clear the status line and the immediate
pane. Next to the Reset button is a drop-down menu that contains two options. Select the
ISAW Script option to write your scripts in the ISAW scripting language; otherwise choose
the Jython Script option to write your scripts in the Jython language. The final button in
the Scripts tab is the Help button. Press this button to display the help documentation
associated with scripting in ISAW.

Figure 6-1, The scripts tab in the main ISAW window.

ISAW Script Data Types

ISAW uses a proprietary scripting language that is similar to Basic or Fortran. In the ISAW
scripting language, variables can store one of five data types:

Integer
Float

S C R I P T S

38

CHAPTER

6

String
Boolean
File
DataSet
Array

The first data assigned to a variable determines the data type of the variable. Integer con-
stants have no decimal points while float constants must have a decimal point. Boolean
constants are either true or false. DataSets do not have constants. Array constants are
specified between square brackets ([]), and elements are separated by commas. Entries
that specify a range of integers are separated by a colon (ie. 1:10) and they can be any Java
object data type.

Other Data Types

ISAW operators can return any Object data type. These return values can be an element of
an array or an argument in an argument list, but not as a variable.

The dimension of an Array can grow normally by one, but if an array has five elements and
an instruction assigns a value to the seventh element, an error will result. It is also possible
to concatenate two or more arrays to grow the array by using the & symbol.

Variable names are not case sensitive and they follow standard Fortran rules for variables.
The leading character must be alphabetic, while the other characters are alphanumeric. The
variable names cannot be reserved words like Load, Display, Save, Send, Return, for, end
for, if, else, elseif, endif, on, end.

Type checking is incorporated in the ISAW scripting language so that if a variable has
stored float data, that variable cannot be assigned an integer data value. Type conversion is
not done on assignment statements; however, type conversions between numbers are done
with the numeric, logical, and relational operations.

Numeric, Logical, and Relational Operations

There are several different numeric, logical, and relational operations available in the ISAW
scripting language. The list below contains each of these operations and its corresponding
symbol.

• Assignment operator: =
• Numeric Operations: +, -, *, /, ^
• Relational Operations: <, <=, >, >=, <>, = or ==
• String Operations: &
• DataSet Operations: +, -, *, / (with floats and other DataSets)
• Boolean Operations: And, or, not
• Array Operations: +, -, *, /, &

• +, -, *, / with a number applies that operation and number to each ele-
ment of the array.

• +, -, *, / with another array applies that operation to corresponding ele-
ments of an array.

• & concatenates two arrays.

S C R I P T S

39

These operations obey the standard conventions of precedence of operations.

Script Structure

Scripts in ISAW have a definite structure that should be followed to ensure that they are
executed properly. The structures that are supported by the ISAW scripting language are:
for, if, if – else, if – elseif, –else, and on error.

The for statement is commonly used to define a variable in a script. There is only one
form for this statement that is supported and it is shown in the following example.

For I in [0,3,5:9]
 Display I
Endfor

In this example there are several minor variations that should be considered. First, the
[0,3,5:9] can be an array variable. The values in this array can be strings, a float, an integer,
etc. The variables should all be of the same data type otherwise type mismatch errors oc-
cur. Also, in this example the variable “I” is used, but any variable can be defined instead.

The if, if -else, if -elseif, and -else statements are all very common in scripting. Only the
multiline form of these structures is allowed. The then is not required at the end of a line start-
ing with the reserved words if or elseif. Nesting with any of the other structures are also sup-
ported. The following example illustrates the use of these statements in a script.

This is a comment
If X > 0 if X>=0 and done then
 Display X Display X
Endif endif

If x< 0 if X>=5 then
 Y = x + 1 Y = X + 1
Else elseif X >=3
 Y = x – 1 Y = X
Endif else
 Y = X – 1
 Endif

The last set of statements are the on error structures. There are two structures for this
statement as illustrated in the following example.

On Error – End Error
On Error – Else Error – End Error

If an error occurs in the On Error block the program will not crash but will transfer con-
trol to the block after the Else Error line or if there is no such line, control will be trans-
ferred to the statement after the line with the associated End Error instruction. Nesting is
supported with these structures as well.

Intrinsic Operators

The ISAW scripting language contains five intrinsic operators including Load, Display, Save,
Send, and Return. These are considered to be reserved words and are not case sensitive.

The Load instruction has several forms which are illustrated in the following examples.

S C R I P T S

40

Load (“c:\\Data\\xxx.run”)
Load (“c:\\Data\\xxx.run”, “Varname”)
n = Load(“C:\\Data\\xxx.run”)
n = Load(“c:\\\Data\\xxx.run”, “Varname”)

All of these examples create DataSets from the specified file. The cases that contain a sec-
ond string argument allows the user to specify a variable name for the DataSets. In the
above cases, the variable names will be Varname [0], Varname [1], etc. If the second string
argument is not specified, then they will be stored with default variable names. The default
variable names are those that appear in ISAW ‘s DataSet tree when the file is loaded (ie.
M1_xxx, H1_xxx, etc.). Files that are not run files can also be loaded with the Load in-
struction, including Java Binary files (.isd).

The Display command has two forms as illustrated by the following examples.

Display expression
Display DataSet_Expression , "SCROLLED_GRAPH"

The first line in the example displays the value of the expression in the Status pane if pos-
sible. If the result is a DataSet, then a viewer will appear to display the DataSet. The sec-
ond line in the example can be used to display a viewer. The second argument in this ex-
ample gives the type of viewer that will appear, and can only be “IMAGE”,
"SCROLLED_GRAPH", "SELECTED_GRAPH", “TABLE”, “THREE_D”, or any view
menu entry.

The Send command has only one form as illustrated by the following example.

Send DataSetExpression

This is used to send the DataSet to any program, such as ISAW, that is listening for the Da-
taSet. ISAW will add the resultant DataSet to its tree.

The Return command is used in instances when scripts can become operators that may want
to return values. The value returned is the value of the last expression that was evaluated. Most
of the time this will be null. To return a non-null value without a Return instruction, smiply
place the variable or expression on the last line of the script. This can be seen in the following
example.

X = 3
Y = 2
Display X+Y
#The following will be returned
X-Y

Other Operators

All other commands that are translated by the Command Pane’s ScriptProcessor are pack-
aged as operators. Some operators are installed before ISAW or the Command Pane is
started. Others can be installed by specifying their location via the Script_Path variable in
the IsawProps.dat file. These will be added as either system loads.

Script Operators

Any script without errors can become a script operator. The script can then be run from
the Command Pane by loading the instructions, and then pressing the Run Prgm button.

S C R I P T S

41

The command used to invoke this operator as an instruction in another script is its file-
name without its path or extension. Extra instructions in scripts can be added to specify
the parameters and prompts for these operators.

$ Title = This will appear in dialog boxes and menus
varname Data Type Prompt
$ x Integer x=
$ y String(“abcd”) y=

The data types that can occur in the previous example are any of the supported data types
that are listed in the Data Types section of this chapter. In addition to these, several other
data types can be used, and the list is as follows.

DSFieldString
InstrumentNameString
DataDirectoryString
DSSettableFieldString

Parentheses are used after the data type specifier to enclose a suggested initial value for this
variable when users are allowed to specify the parameters via the dialog box.

Writing Java operators

There is a slight difference between DataSetOperators and GenericOperators. In DataSet
Operators the first DataSet is not a parameter, so addDataSet must be used instead of add-
Parameter for that argument. This difference is transparent when writing scripts using
these operators. Furthermore, these operators can implement Iobservable and/or Custom-
izer if the required add methods would be needed. The system automatically adds any
available listeners of these types to your operator.

Input-Output Considerations

Functions and Subroutines need inputs in order to produce outputs. The input values must
be obtained through the use of parameters; however, getting the results back to the calling
program requires some additional considerations. Output parameters can only have the
data types of DataSet and Array (in Java this is called a vector). Other unsupported data
types may also be used for sending results back in java-class operators if the code is written
carefully.

Considerations for other cases

If an operator has several results that must be sent back to the calling program, these re-
sults could be packaged into an Array.

Interface to ISAW

The Command Pane was specifically designed to be integrated with ISAW. Most menu
choices in ISAW translate to commands in the Command Pane.

ISAW to Command Pane

All DataSets in ISAW’s DataSet tree can be accessed by the scripts in the Command Pane
according to the following convention:

If the tree DataSet is 25:M1_hrcs2204 , then the script must refer to it as ISAWDS25.

S C R I P T S

42

Again, as mentioned in the Load instruction, the default name given to the variable storing
a DataSet after the Load instruction would be M1_hrcs2204 because that is how the Data-
Set appears in ISAW’s DataSet tree.

ISAW to ScriptProcessor

There is a submenu option called Load Scripts under the ISAW’s File menu. This will
execute the script selected by the file chooser without entering the script into the script edi-
tor window.

Command Pane to ISAW

The Send instruction will send a DataSet to ISAW if ISAW is running. If the Command
Pane is run by itself, then the send command will not work.

Parameter GUI’s

In the ISAW scripting language, it is possible to define GUI elements for your scripts. By
utilizing the following Parameter GUI’s, it is possible to construct a fully functional graphi-
cal user interface in your scripts.

• Array: produces a text field that allows users to enter values into an array. The
result is a vector.

• Boolean: is a class that produces the checkbox GUI element for specifying true
or false. The result is a boolean.

• ChoiceList: is a class that produces the drop-down menu GUI element contain-
ing a list of values to choose from. The return value can be either a string or a
numerical value depending on the input list. For example, if a list of strings is
input then the return value will be a string.

• DataDir: produces a directory chooser window that is used for selecting a direc-
tory. The result is a string.

• DataSet: produces a drop-down menu containing a list of DataSets that are cur-
rently in the tree. The result is a DataSet.

• FloatArrayArray: is used to create a medium-sized, two-dimensional float array.
The result is a vector of vectors of float values.

• FloatArray: is used to create a medium-sized, one-dimensional float array. The
result is a vector of float values.

• Float: produces a text field that is used to enter data containing a floating point
value. The result is a float.

• FuncString: produces a text field that is used to enter a string that represents a
mathematical function. The result is a string.

• InstName: produces a text field that is used to enter instrument names. If the
initial value is left blank then the default instrument will be used. The default
instrument can be specified in ISAWprops.dat under "Viewer Options" by edit-
ing the value for Default_Instrument. The result is a string.

• IntArray: produces a text field that is used to enter an increasing sequence of
consecutive integers. Its value is stored as a formatted string. Individual values
are separated by a comma and a set of consecutive values can be represented by
inserting a colon between the start and end values. The result is a string.

• IntegerArray: produces a list box with editing buttons. It is used to create
medium-sized, one-dimensional integer arrays. The result is a vector of integers.

S C R I P T S

43

• Integer: produces a text field that is used to enter integers. The result is an inte-
ger.

• LoadFileArray: produces file chooser windows that allow the user to choose a
list of files from multiple directories. The result is a vector containing file
names.

• LoadFile: produces a file chooser window that allows the user to choose a single
file. The value is a string.

• Material: produces a text field that is used to enter material names. Chemical
formulas must be typed in the correct format using commas to separate ele-
ments and underscores to indicate the number of atoms. The result is a string.

• MonitorDataSet: produces a drop-down menu that contains a list of available
monitor data sets. The result is a data set.

• PlaceHolder: saves an opaque object value which cannot be altered by the GUI.
Parameters can be passed between operators but cannot be modified by the
scripting language. Since the data type is determined by the first value assigned
to a variable, a variable has this opaque data type if an operator returns an ob-
ject that does not match one of the specific data types.

• PrinterName: produces a drop-down menu that contains a list of printer names
available to the system. The result is a string.

• PulseHeightDataSet: produces a drop-down menu that contains a list of avail-
able pulse height data sets. The result is a data set.

• Qbins1: produces a window with text fields that allow the user to enter start,
end, and number Q bins for a sublist. Constant dQ or dQ/Q choices are also
supported. The result is a vector of floats.

• Qbins: produces a list box with editing buttons that allows the user to enter a
large list of Qbin boundaries with either constant Q widths or constant ratios.
This Parameter GUI allows for concatenating of several of these lists. The re-
sult is a vector of floats.

• RadioButton: is a class that produces radio button GUI elements. The result is a
string.

• RealArray: produces a text field that allows for entry of small lists. The input
can be multi/uni dimensional arrays of integers, floats, doubles, or strings. The
result is a multi-dimensional array that depends on the initial value.

• SampleDataSet: produces a drop-down menu that contains a list of available
sample data sets.

• SaveFile: produces a file chooser window that allows the user to choose a single
file in a directory. The value is a string.

• StringArray: produces a list box with editing buttons that allows users to enter
one-dimensional string arrays. The result is a vector of strings.

• String: produces a text field that is used to enter a string. The result is a string.
• UniformXScale: produces a command pane that allows the user to specify a

start value, an end value, and the number of X values for a uniform X scale.
The result is a vector of float values.

• VariableXScale: produces a list box with editing buttons that allows the user to
enter arbitrary X scales. The return value is a vector of floats.

The Parameter GUI’s can be implemented in a number of different ways, but the basic
format for defining a Parameter GUI can be seen by the following example.

$x Array(2.00,5.00,10.0) Enter Values

S C R I P T S

44

 Display x

In this very simple example, the ArrayPG is used to specify a text field that contains an ar-
ray having values of 2, 5, and 10. Following the array is the area where the title for the text
field should be specified; in this case it is Enter Values. The Display x command is used
to print the array to the Status pane in the Scripts tab.

There are also Paramter GUI’s that have very specific formats for their values. In general,
multiple values should be separated by commas, ranges of values should be separated by
colons, strings should be encapsulated by quotation marks, and vectors should be encapsu-
lated by square brackets. Float PG’s should only specify non-whole numbers, and integer
PG’s should only specify whole numbers.

For Parameter GUI’s that specify a chemical formula, such as MaterialPG, it is necessary to
arrange your formulas in a very specific way. Individual elements should be separated by
commas, and element subscripts can be delineated with an underscore followed by the
number of atoms. For example, trifluoromethanesulfonic acid (CHF3O3S) can be specified
by typing the following.

$x Material(C,H,F_3,O_3,S) Enter Material
 Display x

Parameters such as “Qbins1” and “UniformXScale” also have special requirements for in-
put of their values. In “Qbins1”, the values include start, end, and number of Q bins for a
sublist. This is entered using the following format.

([Start Value, End Value, Number of Steps, Constant dQ or dQ/Q])

Constant dQ or dQ/Q is a boolean value and is specified by either true or false. True indi-
cates constant dQ, and false indicates constant dQ/Q.

The UniformXScale has a similar format for listing a start value, an end value, and the
number of X values for a uniform X scale. These values are entered using the following
format.

([Start Value, End Value, Number of X Values])

Building a Script

Using the information and techniques listed in this chapter, it is possible to construct a
script capable of performing several complex tasks within ISAW. The following example,
written by John Hammonds, illustrates how a script can be used in ISAW to create and run
the Daily Peaks Wizard.

#Specify the command name and category list where the operator appears
$Command = CommandName
$Category = Macros, Examples, Scripts (ISAW)
$filename LoadFileString Enter default file

#Set up the Script directory
isawHome=getSysProp (“ISAW_HOME”)
formHome=isawHome&“/Wizard/TOF_SCD/Scripts_new/”
#Assign the forms to use
form1=formHome&“find_multiple_peaks1.iss”

S C R I P T S

45

form2=formHome&“JIndxSave1.iss”
form3=formHome&“LSqrs.iss”
form4=formHome&“JIndxSave2.iss”
form5=formHome&“integrate_multiple_runs.iss”

#Create an instance of a Wizard object
a = createWizard(“DailyPeaksWizardScriptVers”,false)

#Add forms to the Wizard
addScriptForm(a, form1, “PlaceHolder”, “Peaks”, “”, [])
addScriptForm(a, form2, “Array”, “Result1”, “”, [0])
addScriptForm(a, form3, “Array”, “Result”, “”, [O,1,2,4])
addScriptForm(a, form4, “PlaceHolder”, “Peaks”, “”, [0,3,4,8])
addScriptForm(a, form5, “String”, “Result”, “”, [0,1,2,3,4,5,8,9])
#Create links between forms
#LINK FOR PATH DATA
links[0]= [0,-1,-1,-1,0]
#Link for output path
links[1]= [1,-1,4,3,1]
#Link for Runnums
links[2] = [2,-1,2,4,2]
#Link for exp name
links[3] = [3,-1,1,8,3]
#Link for peaks
links[4] = [12,0,0,0,-1]
#Link for instName
links[5] = [10,-1,-1,-1,8]
#Link for FileExt
links[6] = [11,-1,-1,-1,9]
#Link for calibFilename
links[7] = [8,-1,-1,-1,5]
#Link for RestrRuns
links[8] = [-1,2,-1,5,-1]
#Link for Filename to save peaks to
links[9] = [-1,4,-1,-1,-1]

#Add links to this Wizard
wizardLinkParameters(a,links)

#Load the Wizard
wizardLoader(a)

As you can see from the above example, it is possible to create a wizard from a script in-
stead of Java code. This was done in only five steps. First it is necessary to create a wizard
object. Second, you must add forms and then put wrappers around the forms. The third
step is to link the parameters. The fourth step is to make a new class containing Public
Static Methods; in the above example this is WizardMethods.java. Finally it is necessary to
write the wizard inside the script. These steps illustrate how implementing the concepts in
this chapter will allow you to create powerful scripts, wizards, and operators.

S C R I P T S

46

Operator Generator
The Operator Generator is a tool in ISAW that is used to quickly and easily
create custom operators from existing static methods. The resulting operators
can be invoked either through the Macros menu or a script command.

The Operator Generator

To run the Operator Generator Wizard, simply type the following into your command line.

java devTools.Method2OperatorWizard

When the Operator Generator opens you will see a window containing four tabs.

Information Tab

The Information Tab is used to enter data about the operator’s creator. This data will
automatically be included as part of the documentation for the operator’s code. Informa-
tion entered in this tab can also be stored in a separate file for use in other operators by
choosing Save Contact Info under the File menu.

Method Info Tab

The Method Info tab is where the static methods that will be used in your operator are
chosen and defined. The first option is called Select Class with static Method and is
used to find the Java class that contains the methods that you would like to use. To view
the Java code for the selected class in a separate window, press the View File button. The
Select Method drop-down menu is used to choose a method to work with in the Set GUI
Info for Each Parameter section. The Arguments box lists all of the available parame-
ters fro the currently selected method. To edit the GUI info, select a parameter under Ar-
guments, then enter appropriate information into the text fields following Prompt, Param
Name, and Init Value. The Param GUI button is used to view information about the
currently selected Parameter GUI. The Param GUI Menu lists all the available Parameter
GUI’s that represent the selected argument.

Operator Info Tab

The Operator Info tab is used to define a location for the new operator, and write descrip-
tions for the new operator. The Select Operator Output File is used to select a file to
save the completed operator to. If the file does not exist then it will be written to the
specified location; however, doing this will not save the current session. The next three op-
tions are used to edit the operator’s properties. Use the Operator Title text box to enter a
title for the operator; this title will be used as the operator’s name in all menus. The Com-
mand for Scripts text field is used to define how the operator is called from scripts. The
Category text field is used to specify the menu location of the operator. Operators will be
placed under the Macros menu. Any additional sub-menus that are specified will be created
if they do not already exist.

Documentation Tab

The Documentation Tab is used to enter all of the relevant information about your opera-
tor that you would like to provide to users of your operator. Each text box provides ample
room to type your comments and will appear when a user loads the operator in ISAW. The
Overview text box should be used to enter a brief description of your operator. The As-
sumption text box should be used to address any assumptions within the operator

O P E R A T O R G E N E R A T O R

47

CHAPTER

7

including special DataSet requirements, positive/negative values, and units of measure-
ment. The Algorithm text box should be used to enter relevant information about the
mathematical processes used in the operator. The Return text box is used to enter infor-
mation about the operator’s return values. It is important to include information about the
return type and units of measurement. The Parameter text box should be used to describe
the operator’s variables and stored values. The Error text box should be used to describe
any known errors that exist within the operator. Exceptions will be translated into error
messages as specified by this field.

Programmer Notes

Parameter GUI elements are created for each method argument that is used. Each static
method must return an object value. For each static method, objects include one and two-
dimensional arrays, strings and error strings. Objects include the primitive data types; how-
ever, “Integer” cannot be used instead of “int”. This rule applies for other parameters as
well. Error strings and exceptions can be reported by objects.

Operator Generator File Menu

The File menu contains several options for storing operator information, saving your Op-
erator Generator session, and creating your custom operator. The Load Contact Info op-
tion is used to load your saved contact information into the Information Tab in the Op-
erator Generator. The Load Session option is used to load your saved session information
into all of the tabs in the Operator Generator. Use the Create Operator option to create
the currently defined operator and save it to the file chosen in Select Operator Output
File under the Info tab. Please note that using the Create Operator option will not save the
current session; to save your session, select the Save Session option under the File menu.
The Save Contact Info option is used to save the data contained in the Info tab as a sepa-
rate file for use in other operators. The Exit option can be used to exit the Operator Gen-
erator.

O P E R A T O R G E N E R A T O R

48

Building DataSets
A DataSet object, as used by ISAW, is a container object that contains zero or
more Data objects. Each Data object represents a tabulated function or histo-
gram using a collection of "y" values and corresponding "x" values. Both the
containing DataSet and each Data object that it contains also hold several types
of auxiliary information. Some of the auxiliary information is in the form of a fixed set of
data fields in the objects. Some of it is in an extensible list of "attributes" maintained by
each object. Various operations can be performed on a DataSet and the DataSet includes
an extensible list of operators that can operate on the DataSet. Finally, the DataSet keeps a
"log" of the operations that have been applied to the DataSet.

Steps in Building a DataSet

1. Construct the empty DataSet complete with appropriate operators.

2. Add "attributes" to the DataSet.

3. Construct a Data block to add to the DataSet.

4. Add "attributes" to the Data block.

5. Add the Data block to the DataSet.

Creating a DataSet
Construct the Empty DataSet

This is very easy for a time-of-flight DataSet. There is a DataSetFactory that can be used to
build the empty DataSet and add the needed operators to the DataSet. For a time-of-flight
DataSet this is used as shown below. The "title" parameter that is passed to the constructor
of the DataSetFactory will specify what title will be used for subsequent DataSets produced
by the factory.

 DataSetFactory ds_factory = new DataSetFactory(title);

 DataSet ds = ds_factory.getTofDataSet(instrument_type);

The instrument_type is an integer code for the type of instrument. This is used by the Da-
taSetFactory to determine which operators should be added. The values for the integer
codes are defined in the file:

 .../DataSetTools/instruments/InstrumentType.java

and currently include:

 InstrumentType.TOF_DIFFRACTOMETER

 InstrumentType.TOF_SCD

 InstrumentType.TOF_SAD

 InstrumentType.TOF_DG_SPECTROMETER

B U I L D I N G D A T A S E T S

49

Appendix

1

 InstrumentType.TOF_IDG_SPECTROMETER

 InstrumentType.TOF_REFLECTROMETER

At this time DataSetFactory provides a larger set of operations for the types TOF_DIF-
FRACTOMETER and TOF_DG_SPECTROMETER. Support, by way of special operators for the
other instrument types is still being developed. In all cases, very basic operations such as
add, subtract, multiply and divide by DataSets and scalars are included. If you are con-
structing a "generic" DataSet with axis labels and units other than those for a time-of-flight
instrument, you can use a different constructor for the DataSetFactory such as:

 DataSetFactory factory = new DataSetFactory(title,

 "Angstroms",

 "d-Spacing",

 "Counts",

 "Scattering Intensity");

 DataSet ds = factory.getDataSet();

In this case, the factory will produce DataSets with the given title, axis units and labels. The
method "getDataSet" will only add the generic operators to the DataSet, not the operators
specific to time-of-flight DataSets.

Add Attributes to the DataSet

Attributes can be added to DataSets and Data blocks at any time. It's probably best to add
the attributes you'll need in an organized manner at the time that you are constructing the
DataSet. Attributes are name, value pairs where the value can be things like an integer,
float, array of integers, character string, etc. Attributes are classes that are derived from the
abstract base class defined in .../DataSetTools/dataset/Attribute.java. This file
also contains a list of the names that we have been using for the attributes. The names are
given by "constant" strings. Since each attribute is stored in it's own object, it is usually
necessary to create the attribute objects as they are added to the DataSet (or Data block). If
a few individual attributes are being added to the DataSet (or Data block) they can be added
using the setAttribute(attribute) method. For example, assuming that the original data file
name is to be stored as an attribute of the DataSet, you could write:

 ds.setAttribute(new StringAttribute(Attribute.FILE_NAME,
file_name));

to set an attribute for the file name in DataSet "ds". This assumes that the variable
file_name is a string containing the file name. This will construct a new StringAttribute
object with the name of the attribute given by the constant Attribute.FILE_NAME =
"File" and the value of the attribute given by the file_name string. Other attributes are
treated similarly.

 ds.setAttribute(new IntAttribute(Attribute.NUMBER_OF_PULSES,
num_pulses));

B U I L D I N G D A T A S E T S

50

The attribute can also be constructed separately and then set in the DataSet like:

 int_attr = new IntAttribute(Attribute.NUMBER_OF_PULSES, num_pulses
);

 ds.setAttribute(int_attr);

Finally, there are also routines to get and set the entire list of attributes at once, but the rou-
tines to get and set individual attributes are actually more efficient to use in most cases.

Construct a Data Object

The three most crucial pieces of information held in each Data object are the list of y-
values, an XScale object specifying the corresponding x-values and a unique integer ID.
These three pieces of information are needed by the constructor for a Data object. The y-
values are just an array of type float[] and the ID is just an integer value. However, the
XScale is an object that either contains the x-values, or contains enough information to cal-
culate uniformly spaced x-values. The x-values are stored in an XScale object for space ef-
ficiency. That is, in many cases the x-values associated with a Data block are evenly spaced.
In that case, they can be easily calculated as needed based on the first point, the last point
and the number of points. Since we may have thousands of spectra with thousands of y-
values in each, it would be a serious waste of space to store corresponding evenly spaced x-
values in such cases. In this case, the x-values can be stored in a UniformXScale object,
derived from an XScale object. For example, a uniform XScale object with 101 points
evenly spaced on the interval [0,10] can be constructed as:

 XScale x_scale = new UniformXScale(0, 10, 101);

If the x-values are not evenly spaced, a VariableXScale object can be used to explicitly store
all of the x-values. Specifically, if an array of floats named "x-vals" contained the x-values
we could create a VariableXScale object as follows:

 XScale x_scale = new VariableXScale(x-vals);

In either case, software using the x_scale can get at information such as the min, max,
number of points and the actual x-values using the methods of the base class XScale. For
a time-of-flight Data object, the operators assume that the times are specified in microsec-
onds. It also should be noted, that Data objects are used to store either histogram data, or
tabulated function data. These two cases are distinguished based on the relationship be-
tween the number of x-values and the number of y-values. Specifically, for a tabulated
function Data object, the number of x-values will be the same as the number of y-values.
In this case, the y-values give the value of a function at the corresponding x-value. On the
other hand, for a histogram, the Data object records the x-values at the boundaries of the
histogram bins. The y-values are considered to be the y-values at the bin centers. Thus for
histogram data, the number of x-values is one more than the number of y-values. The
number x-values is restricted by the Data object constructor to be either the number of y-
values, or the number of y-values plus one.

An example of building a simple Data block for the function y = (x/10)^2 on the inter-
val [0,49], with ID = 1 is given below:

 float y_values[] = new float[50];

B U I L D I N G D A T A S E T S

51

 XScale x_scale = new UniformXScale(0, 49, 50);

 for (int i = 0; i < 50; i++)

 y_values[i] = (i/10.0) * (i/10.0)

 Data data = Data.getInstance(x_scale, y_values, 1);

Add Attributes to a Data Object

Both DataSet objects and the Data objects that they contain implement the IAttributeList
interface. As a result, attributes are added to Data objects in exactly the same way as they
are added to DataSets. For example, if data is a Data object, we could add an attribute
specifying that the initial energy was 120.0 as follows:

 data.setAttribute(new FloatAttribute(Attribute.ENERGY_IN, 120.0f)
);

Add the Data Object to the DataSet

Once a Data object has been constructed, and its attributes set, it should be added to a Da-
taSet. For example, to add a Data object "data" to a DataSet "ds" just do:

 ds.addData_entry(data);

Attributes Required for a DataSet and Data Object

Although the above discussion describes how to construct a Data block and DataSet, more
information is needed to construct a DataSet to hold time-of-flight data in a way that will
allow useful operations to be done on the Data. In particular, most of the "interesting"
operators for neutron scattering rely on specific attributes of the DataSet and Data objects.
The attributes that are currently used by various operators include:

 Attribute.DETECTOR_POS <- object

 Attribute.INITIAL_PATH <- float

 Attribute.ENERGY_IN <- float

 Attribute.NUMBER_OF_PULSES <- int

 Attribute.SOLID_ANGLE <- float

 Attribute.DELTA_2THETA <- float

 Attribute.RAW_ANGLE <- float

To allow for comparing and scaling DataSets, some measure of the number of neutrons
that hit the sample is needed. For use in scripts, this should probably be the number of
pulses, at least that is what has been used for GPPD. If the number of pulses is not di-
rectly available, it could possibly be approximated based on a start time and end time. At

B U I L D I N G D A T A S E T S

52

any rate, it would be useful to have the number of pulses stored as a DataSet attribute for
any instrument.

The attributes listed above are primarily used as attributes of each Data object. The attrib-
utes are listed in decreasing order of importance. Interpreting the time-of-flight data al-
most always requires the effective detector position. The convention used in the DataSet-
Tools package is that the effective detector position gives the position of the detector rela-
tive to the center of the sample. Since there are different ways of specifying this position, a
class was constructed to hold the position information and provide some extra information
as needed. A "Position3D" object contains a 3D position, specified in any of the usual co-
ordinate systems, Cartesian, cylindrical or spherical. There are methods to get and set the
position in any of these coordinate systems, as well as some additional convenience rou-
tines.

The convention for the instruments at IPNS is that the coordinate system has its origin at
the sample position, the x-axis points in the direction the incident beam is traveling, the y-
axis is horizontal, perpendicular to the incident beam and z-axis is perpendicular to the
earth's surface. This is also the convention followed by the DataSetTools package. Unfor-
tunately, that coordinate system is somewhat inconvenient for describing the scattering an-
gle (the angle between the positive x-axis and the vector from the sample to the detector).
Since the operators frequently need to use the scattering angle a class "DetectorPosition"
was derived from the Position3D class. The DetectorPosition class adds a method to get
the scattering angle, and so it should be used to represent the position of the detector rela-
tive to the sample. An example of code to set a detector position attribute corresponding
to a detector that is at an angle of 50 degrees, 0.1 meter above the xy plane, and above a
horizontal circle of radius 4.0 meters centered at the sample is shown below:

 DetectorPosition position = new DetectorPosition();

 float angle = 50.0f * (float)(Math.PI / 180.0);

 float final_path = 4.0f;

 float height = 0.1f;

 position.setCylindricalCoords(final_path, angle, height);

 data.setAttribute(new DetPosAttribute(Attribute.DETECTOR_POS,

 position));

Lengths are assumed to be in meters, and angles are stored in radians. If the detector posi-
tion is easier to specify in Cartesian coordinates, (x, y, z), the method
position.setCartesianCoords(x, y, z) can be used instead.

The initial path attribute is needed for the diffractometer instruments. The initial flight
path is the source to sample distance in meters. If this can be obtained, as say the float
variable "length", it is easily added to the Data block as:

 data.setAttribute(new FloatAttribute(Attribute.INITIAL_PATH,
length));

B U I L D I N G D A T A S E T S

53

The operators to process data from direct geometry spectrometers require the initial energy
of the neutrons incident on the sample. The initial energy is assumed to be in meV. It is
often necessary to calibrate this value, but at least some initial approximation will be needed
by these operators. The more advanced operators for direct geometry spectrometers will
require the number of pulses to be stored with each Data block, in addition to being stored
with the DataSet as a whole. Finally, these operators need the solid angle subtended by the
detector group, measured in steradians.

The operator to produce a display of S(Q,E) for spectrometers will need an approximate
value for the interval of scattering angles covered by each detector. That is, each detector
has non-zero dimensions. Consequently, even though the detector might be nominally at
say 50 degrees, it actually covers some interval, say 49.95 to 50.05 degrees. Some approxi-
mation to the range of angles covered should be stored in a DELTA_2THETA attribute. This
value is assumed to be stored in degrees.

The operator to produce a "TrueAngle" display of a DataSet requires the DELTA_2THETA
attribute, as well as the RAW_ANGLE. The RAW_ANGLE is the actual physical scattering angle
for the detector, without regard to time-focusing. (Time focusing may adjust the raw angle
to a different effective angle.) A DETECTOR_POS attribute is assumed to hold the effective
3D position of the detector, while a RAW_ANGLE attribute is assumed to hold the physical,
unfocused scattering angle.

Data Retriever

In order to easily work with different sources of data, such as IPNS runfiles, Nexus files,
data acquisition hardware, etc. the system was designed to access data through subclasses of
the abstract class .../DataSetTools/retriever/Retriever.java. Currently the only
derived class is a RunfileRetriever that accesses IPNS runfiles. New data sources should be
supported by making a new class derived from the Retriever class, since in that way, all data
sources can be used in the same way. The Retriever class is quite simple:

The constructor accepts a string giving the name of the data source. For a data file, this
would most likely be the file name, and the file would most likely be opened in the con-
structor. The Retriever class then provides three methods, a method to get the number of
DataSets available from the source, a method to get the type of each available DataSet (
MONITOR_DATA_SET or HISTOGRAM_DATA_SET) and a method to get a specific DataSet
from the source. For the special case of the IPNS runfile retriever this gets used as simply
as:

 RunfileRetriever rr = new RunfileRetriever("gppd9898.run");

 DataSet A_monitor_ds = rr.getDataSet(0);

 DataSet A_histogram_ds = rr.getDataSet(1);

where we've used the simplifying assumption that the "zeroth" DataSet is always the moni-
tor DataSet and the "first" always the first histogram DataSet. These simplifying assump-

B U I L D I N G D A T A S E T S

54

tions make it unnecessary to find out the number of DataSets and find out their types be-
fore reading.

As other types of files or data sources are supported, the Retriever class may need to ex-
pand slightly. However it is best to keep this class as simple as possible, since any new
functionality introduced in the Retriever will have to be supported by ALL types of retriev-
ers.

Example

A simple program to demonstrate building a DataSet is in the file:

 .../DataSetTools/trial/BuildDataSetDemo.java

in the latest version of DataSetTools. It can be compiled from within the directory con-
taining it using:

 javac BuildDataSetDemo.java

and then can be run using

 java BuildDataSetDemo

Assuming that all PATH and CLASSPATH values have been set properly. The code for the
demo is listed below:

/*

 * @(#) BuildDataSetDemo.java 1.0 2000/9/19 Dennis Mikkelson

 *

 */

import DataSetTools.dataset.*;

import DataSetTools.viewer.*;

import DataSetTools.math.*;

/**

 * This class provides a basic demo of how to construct a DataSet.

 */

public class BuildDataSetDemo

{

 /**

 * This method builds a simple DataSet with a collection of 10 sine
waves.

B U I L D I N G D A T A S E T S

55

 *

 * @return A sample DataSet with 10 sine waves.

 */

 public DataSet BuildDataSet()

 {

 //

 // 1. Use a "factory" to construct a DataSet with operators --------

 //

 DataSetFactory factory = new DataSetFactory("Collection of Sine
Waves",

 "time",

 "milli-seconds",

 "signal level",

 "volts");

 DataSet new_ds = factory.getDataSet();

 //

 // 2. Add attributes, as needed to the DataSet --------------------

 //

 new_ds.setAttribute(new StringAttribute(Attribute.FILE_NAME,

 "BuildDataSetDemo.java")
);

 new_ds.setAttribute(new IntAttribute(Attribute.NUMBER_OF_PULSES,
10000));

 //

 // Now, repeatedly construct and add Data blocks to the DataSet

 //

 Data data; // data block that will hold info on one
signal

 float[] y_values;// array to hold the y-values for that sig-
nal

 XScale x_scale; // "time channels" for the signal

B U I L D I N G D A T A S E T S

56

 for (int id = 1; id < 10; id++) // for each id

 {

 //

 // 3. Construct a Data object

 //

 x_scale = new UniformXScale(1, 5, 50); // build list of time
channels

 y_values = new float[50]; // build list of counts

 for (int channel = 0; channel < 50; channel++)

 y_values[channel] = 100*(float)Math.sin(id * channel / 10.0
);

 data = new Data(x_scale, y_values, id);

 //

 // 4. Add attributes as needed to the Data block

 //

 // "simple" energy in attribute

 data.setAttribute(new FloatAttribute(Attribute.ENERGY_IN,
120.0f));

 // more complicated, position

 // attribute has a position

 // object as it's value

 DetectorPosition position = new DetectorPosition();

 float angle = 50.0f * (float)(Math.PI / 180.0);

 float final_path = 4.0f;

 float height = 0.1f;

 position.setCylindricalCoords(final_path, angle, height);

 data.setAttribute(new DetPosAttribute(Attribute.DETECTOR_POS,

 position));

 //

B U I L D I N G D A T A S E T S

57

 // 5. Add the Data object to the DataSet

 //

 new_ds.addData_entry(data);

 }

 return new_ds;

 }

 /*
--
*/

 /**

 * The main program method for this object

 */

 public static void main(String args[])

 {

 BuildDataSetDemo demo_prog = new BuildDataSetDemo();// create the
class

 DataSet test_ds = demo_prog.BuildDataSet(); // call the method
to

 // construct a Da-
taSet

 // create a viewer
for

 // the DataSet

 ViewManager view_manager = new ViewManager(test_ds,
IViewManager.IMAGE);

 }

}

B U I L D I N G D A T A S E T S

58

